Algoritmos paralelos para la reducción de ruido mixto gaussiano-impulsivo en imágenes médicas

Filtrado de imágenes en tiempo real acelerado con C++, OpenMP y MPI

Ignacio Encinas Rubio Tutor: Josep Arnal García

Escuela Politécnica Universidad de Alicante

13 de junio de 2022

Presentación disponible en

ls.ecomaikgolf.com/tfg/ignacio/slides.pdf

Contenidos

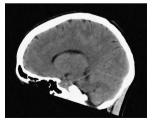
- 1. Introducción
 - 1.1. Contexto
 - 1.2. Punto de partida
 - 1.3. Ruidos a filtrar
- 2. Marco Teórico
 - 2.1. Algoritmo
- 3. Implementación
 - 3.1. Versión secuencial
 - 3.2. Versión en memoria compartida
 - 5.2. Version en memoria compartio
 - 3.3. Versión distribuida

- 4. Rendimiento
 - 4.1. Equipos de pruebas
 - 4.2. Versión en memoria compartida
 - 4.3. Versión distribuida Esquema de iteraciones locales
- 5. Calidad de filtrado
 - 5.1. Métricas numéricas
 - 5.2. Calidad visual

Introducción: Contexto

Las imágenes CT son una herramienta fundamental para diagnosticar numerosas patologías.

- Contaminadas en el proceso de adquisición, transmisión y almacenamiento
- Reducción en la radiación nociva para el paciente causa un aumento en el ruido
- Métodos de filtrado efectivos costosos computacionalmente



Introducción: Punto de partida

Implementación del filtro basado en la lógica difusa propuesto en Camarena, J.-G., Gregori, V., Morillas, S., y Sapena, A. (2013). A simple fuzzy method to remove mixed gaussian-impulsive noise from color images. IEEE Transactions on Fuzzy Systems, 21(5), 971-978.

Ejecutado de manera iterativa. Evaluación de un esquema de iteraciones locales en la implementación distribuida.

- Versión secuencial
- Versión en memoria compartida
- Versión distribuida

Introducción: Ruidos a filtrar

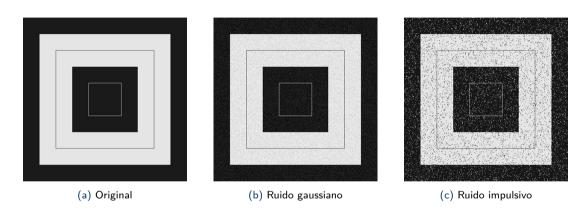


Figura: Ruidos a filtrar y sus efectos visuales

Marco Teórico: Algoritmo

Primero, un poco de notación:

- x_i se refiere al pixel que está siendo filtrado
- $lacksquare\ x^j$ se refiere a cualquier pixel dentro de la ventana de filtrado

Trabajaremos con los q vecinos más similares a x_i

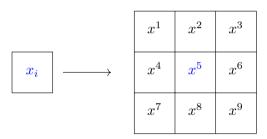
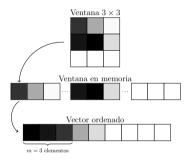


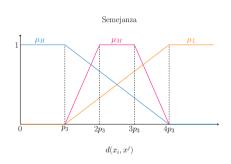
Figura: Ventana de filtrado. Ejemplo de dimensiones 3x3

Marco Teórico: Algoritmo

Caracterización de los ruidos gaussianos e impulsivos.



Grado de impulsividad determinado por la métrica $\mathrm{ROAD}_m = \sum_{i=1}^m d(x_i, x^j)$



Tres grados de semejanza: alta, media y baja. Dependiente de la distancia entre píxeles $d(x_i, x^j)$.

Marco Teórico: Algoritmo

- Reglas difusas
 - 1. ...
 - 2. **SI** $(x^j \text{ no es impulsivo } \mathbf{Y} \ x_i \text{ es impulsivo } \mathbf{Y} \text{ la semejanza entre } x^j \text{ y } x_i \text{ es moderada})$ **ENTONCES** ω_j es un peso moderado
 - 3. ...
- Defuzzificación mediante el centro de gravedad

```
Algoritmo 1: Filtro difuso secuencial
Datos: Imagen ruidosa I. parámetros
         n, q, m, p_1, p_2, p_3, p_4
Resultado: Imagen filtrada I'
Imagen I_0 = I
para Iteración it = 1... hacer
    Imagen I_{it} = I_{it-1}
    para x_i pixel \in I_{it} hacer
        Tomar la ventana W n \times n centrada en x_i
        Cálculo del grado de impulsividad
            Calcular \mu(x_i)
        Cálculo del grado de semejanza
            Ordenar los píxeles x^j \in W según d(x_i, x^j)
            Seleccionar los q píxeles mas cercanos
             x^{1}, ..., x^{q}
            para j = 1, \ldots, q hacer
                Calcular
                 \mu_H(x_i, x^j), \mu_L(x_i, x^j), \mu_H(x_i, x^j).
        Cálculo de los pesos mediante defuzzificación
            para i = 1, \dots, q hacer
                Calcular las reglas difusas para \{x_i, x^j\}
                Calcular el peso w_i correspondiente a x^j
                  mediante COG
            fin
        Cálculo del nuevo valor para x<sub>i</sub>
            \hat{x}_i = \frac{\sum_{j=1}^{q} \omega_j \cdot x^j}{\sum_{j=1}^{q} \omega_j}
   fin
```

Implementación: Versión secuencial

Cálculo del centro de gravedad mediante métodos geométricos.

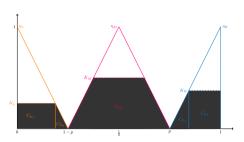


Figura: Centro de gravedad a obtener por cada $x_i, x_j \in W$

Figura: Aceleración obtenida gracias al cálculo geométrico

Implementación: Versión secuencial

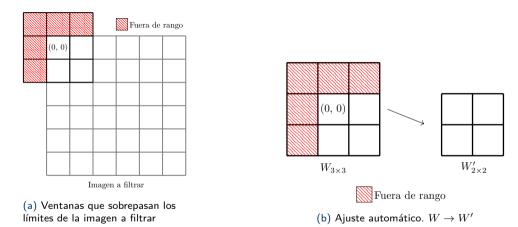
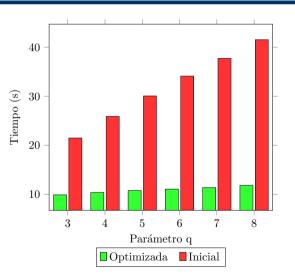


Figura: Gestión de las ventanas de filtrado transparente al desarrollador

Implementación: Versión secuencial

La implementación inicial ingenua podía llegar a calcular el grado de impulsividad de cada pixel en numerosas ocasiones. Por ello introdujimos un «almacén» de grados de impulsividad para evitar este problema.



Implementación: Versión en memoria compartida

Paralelización del núcleo de la aplicación mediante directivas de OpenMP.

- Paralelización del tratamiento de la imagen.
- Almacenamiento local para cada hilo (TLS)
- Sincronización sin cerrojos

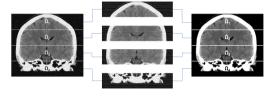


Figura: La paralelización actúa a nivel de subdominio Ω_i

Implementación: Versión distribuida

Desarrollada utilizando MPI.

Tamaño de ventana $n=2\omega+1$

- lacksquare Ω_i : Región a **filtrar** por el nodo i
- lacksquare Ω_i^ω : Región a **necesaria** para el nodo i
- lacksquare Solapamiento ightarrow Comunicación

Propuesta

Esquema de iteraciones locales. En lugar de comunicar cada iteración, hacerlo cada \boldsymbol{x} iteraciones.

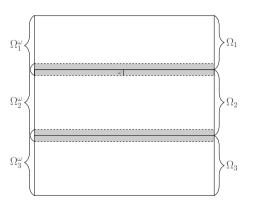


Figura: Descomposición del trabajo para 3 nodos

Rendimiento: Equipos de pruebas

Equipo 1. Ordenador personal

- (x1) AMD Ryzen 2700X (8C / 16T), 16GB RAM DDR4 3200MT/s
- ArchLinux. Kernel 5.16.12
- GCC 11.2.0

Equipo 2. Cluster del IUII

- (2x) CPU Intel Xeon X 5660 (6C/12T), 48GB RAM DDR3 1333MT/s
- CentOS 7. Kernel 3.10.0
- GCC 7.5.0
- OpenMPI 4.0.2

Rendimiento: Versión en memoria compartida

Rendimiento óptimo en el Equipo 1.

Rendimiento subóptimo en el Equipo 2.

- Nodos dual-socket
- Compilador más anticuado

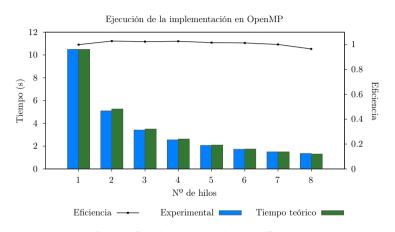
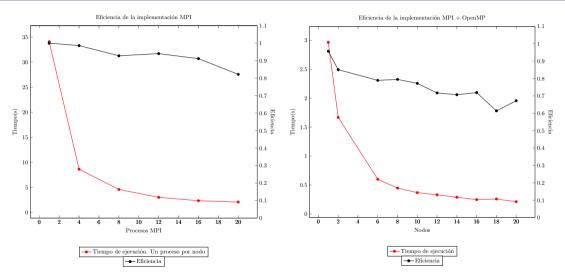


Figura: Benchmark medido en el Equipo 1

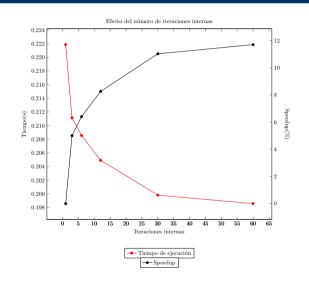
Rendimiento: Versión distribuida



Rendimiento: Versión distribuida

■ La eficiencia combinada se ve lastrada por el rendimiento paralelo en los equipos del clúster.

 El esquema de iteraciones locales supone una aceleración cercana al 12 % sin pérdida de calidad de filtrado.



Calidad de filtrado: Métricas numéricas I

	MAE							
	Vista axial		Vista sagital		Vista coronal			
Ruido	Ruidosa	Filtrada	Ruidosa	Filtrada	Ruidosa	Filtrada		
$\sigma = 5, \ p = 0.05$	13.19	4.32	8.54	2.60	9.20	2.98		
$\sigma = 10, \ p = 0.1$	21.29	5.97	14.28	3.61	15.37	4.07		
$\sigma = 20, \ p = 0.2$	35.65	8.26	24.87	5.91	26.64	6.47		
$\sigma = 30, \ p = 0.3$	50.03	13.02	34.84	9.08	37.29	9.81		

Tabla: Valores mínimos de MAE en las imágenes contaminadas con los distintos ruidos gaussiano e impulsivos

Calidad de filtrado: Métricas numéricas II

	PSNR							
	Vista axial		Vista sagital		Vista coronal			
Ruido	Ruidosa	Filtrada	Ruidosa	Filtrada	Ruidosa	Filtrada		
$\sigma = 5, \ p = 0.05$	19.03	34.57	18.85	34.81	19.21	34.32		
$\sigma = 10, \ p = 0.1$	16.06	32.22	15.86	32.53	16.13	32.03		
$\sigma = 20, \ p = 0.2$	12.98	29.53	12.82	28.80	13.07	28.46		
$\sigma = 30, \ p = 0.3$	11.17	25.80	11.02	25.24	11.25	25.06		

Tabla: Valores máximos de PSNR en las imágenes contaminadas con los distintos ruidos gaussiano e impulsivos

Calidad de filtrado: Calidad visual

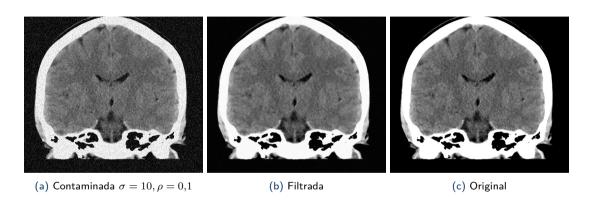


Figura: Vista coronal contaminada, filtrada y original

Conclusión

Resultados:

- Alta eficiencia de la implementación paralela
 - $> 85\,\%$ Equipo 1
 - $>96\,\%$ Equipo 2
- Alta eficiencia de la implementación distribuida. > 82% con 20 nodos.
- Calidad de filtrado notable.

Líneas futuras:

- Implementación con primitivas MPI no bloqueantes.
- Desarrollar una versión acelerada por GPU.

Conclusión

Gracias por su atención.

Aclaraciones

- Valores lógicos $\{0,1\} \rightarrow [0,1]$
- Pertenencia a conjuntos definida por funciones
- Operadores lógicos
 - $\{A \wedge B\} \rightarrow \{A \cdot B\}$
 - $\{A \vee B\} \rightarrow \{A + B A \cdot B\}$
- Reglas difusas
- Defuzzificación

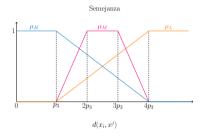


Figura: Grado de semejanza para un pixel x^j en función de $d(x_i,x^j)$

Aclaraciones II

- Caracterización de la impulsividad y la semejanza entre píxeles dentro de la ventana de filtrado.
- Reglas difusas
 - 1. ...
 - 2. **SI** (x^j no es impulsivo **Y** x_i es impulsivo **Y** la semejanza entre x^j y x_i es moderada) **ENTONCES** ω_i es un peso **moderado**.
 - 3. ...
- Defuzzificación mediante el centro de gravedad

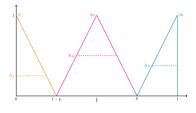


Figura: Funciones de membresía $\eta_H(\omega_j),~\eta_M(\omega_j),~y~\eta_L(\omega_j)$ junto a K_L,K_M,K_H correspondientes a las reglas difusas $\{1,\,2,\,3\}$ respectivamente para determinados píxeles x_i y x^j