Secure Boot

Analysis of Secure Boot and the Trusted Boot Chain

>_ DEV v1.3-RC1

Ernesto Martínez García me@ecomaikgolf.com ecomaikgolf#3519

Secure Application Design VO SS23

23rd of June 2023

♣ SLIDES & REPORT

Why Secure Boot?

We've been studying how cryptography 4 can be applied to solve real world problems:

RKSV

Green Pass

elDAS

ID Austria

. . .

Why Secure Boot?

We've been studying how cryptography \circ can be applied to solve real world problems:

RKSV (

een Pass

eIDAS

ID Austria

. . .

Why Secure Boot?

We've been studying how cryptography 4 can be applied to solve real world problems:

RKSV

Green Pass

eIDAS

ID Austria

. . .

Why Secure Boot?

We've been studying how cryptography 4 can be applied to solve real world problems:

RKSV

Green Pass

eIDAS

ID Austria

. . .

Why Secure Boot?

We've been studying how cryptography 4 can be applied to solve real world problems:

RKSV

Green Pass

eIDAS

ID Austria

. . .

Secure Boot **U** also uses a "cryptographic toolbox" to solve a real world problem

This was the goal **1** of SEAD, learning how "toolboxes" are used to solve problems.

We'll see how cryptography 4 is being used in Secure Boot and which problem solves

Why Secure Boot?

We've been studying how cryptography 4 can be applied to solve real world problems:

RKSV

Green Pass

eIDAS

ID Austria

. . .

Secure Boot **U** also uses a "cryptographic toolbox" to solve a real world problem

This was the goal **②** of SEAD, learning how "toolboxes" are used to solve problems.

We'll see how cryptography 4 is being used in Secure Boot and which problem solves

- Introduction
 - History of Booting Mechanisms
 - What is Secure Boot?
 - Unpopularity of Secure Boot
- Threat Model
- % Signature Verification Chain
 - ▼ EFI Firmware
 - → Shim
 - → Bootloader
 - ▼ Kernel

- Past Vulnerabilities
 - **D** Defended By Secure Boot
 - Secure Boot Open Problems
 - P Secure Boot Advanced Targeting
- Experiment
 - Attacking non Secure Boot systems
- Conclusion
 - Current State
 - Future Personal Opinion
 - ✓ Takeaways

- Introduction
 - History of Booting Mechanisms
 - What is Secure Boot?
 - Unpopularity of Secure Boot
- Threat Model
- % Signature Verification Chain
 - ▼ EFI Firmware
 - Shim
 - Bootloader
 - ▼ Kernel

- Past Vulnerabilities
 - **D** Defended By Secure Boot
 - Secure Boot Open Problems
 - Secure Boot Advanced Targeting
- Experiment
 - Attacking non Secure Boot systems
- Conclusion
 - Current State
 - Future Personal Opinion
 - ▼ Takeaways

- Introduction
 - History of Booting Mechanisms
 - What is Secure Boot?
 - Unpopularity of Secure Boot
- Threat Model
 - What Secure Boot Defends Against?
- % Signature Verification Chain
 - ▼ EFI Firmware
 - Shim
 - → Bootloade
 - ▼ Kernel

- Past Vulnerabilities
 - Defended By Secure Boot
 - Secure Boot Open Problems
 - Secure Boot Advanced Targeting
- Experiment
 - Attacking non Secure Boot systems
- Conclusion
 - Current State
 - Future Personal Opinion
 - ▼ Takeaways

- Introduction
 - History of Booting Mechanisms
 - What is Secure Boot?
 - Unpopularity of Secure Boot
- Threat Model
 - What Secure Boot Defends Against?
- Signature Verification Chain
 - → EFI Firmware
 - → Shim
 - → Bootloader
 - ▼ Kernel

- Past Vulnerabilities
 - Defended By Secure Boot
 - Secure Boot Open Problems
 - Secure Boot Advanced Targeting
- Experiment
 - Attacking non Secure Boot systems
- Conclusion
 - Current State
 - Future Personal Opinion
 - ▼ Takeaways

- Introduction
 - History of Booting Mechanisms
 - What is Secure Boot?
 - Unpopularity of Secure Boot
- Threat Model
 - What Secure Boot Defends Against?
- % Signature Verification Chain
 - → EFI Firmware
 - Shim
 - ▼ Bootloader
 - ▼ Kernel

- Past Vulnerabilities
 - **D** Defended By Secure Boot
 - Secure Boot Open Problems
 - Secure Boot Advanced Targeting
- Experiment
 - Attacking non Secure Boot systems
- Conclusion
 - **Current State**
 - Future Personal Opinion
 - ▼ Takeaways

- Introduction
 - History of Booting Mechanisms
 - What is Secure Boot?
 - Unpopularity of Secure Boot
- Threat Model
 - What Secure Boot Defends Against?
- Signature Verification Chain
 - → EFI Firmware
 - → Shim
 - → Bootloader
 - ▼ Kernel

- Past Vulnerabilities
 - **D** Defended By Secure Boot
 - Secure Boot Open Problems
 - Secure Boot Advanced Targeting
- Experiment
 - ⚠ Attacking non Secure Boot systems
- Conclusion
 - Current State
 - Future Personal Opinion
 - ▼ Takeaways

- Introduction
 - History of Booting Mechanisms
 - What is Secure Boot?
 - Unpopularity of Secure Boot
- Threat Model
 - What Secure Boot Defends Against?
- Signature Verification Chain
 - → EFI Firmware
 - → Shim
 - → Bootloader
 - ▼ Kernel

- Past Vulnerabilities
 - **U** Defended By Secure Boot
 - Secure Boot Open Problems
 - Secure Boot Advanced Targeting
- Experiment
 - Attacking non Secure Boot systems
- Conclusion
 - Current State
 - Future Personal Opinion
 - ✓ Takeaways

Introduction

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
 - BIOS will perform POST ②, device initialization and will jump to our bootloader
- 🛗 Years passed and BIOS accumulated many limitations 🕾
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 -

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
 - BIOS will perform POST ②, device initialization and will jump to our bootloader
- 🛗 Years passed and BIOS accumulated many limitations 🕃
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 -

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
 - BIOS will perform POST ⊙, device initialization and will jump to our bootloader
 - Acts as a layer between firmware and the rest
- 🛗 Years passed and BIOS accumulated many limitations 🕃
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 - ...

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
 - BIOS will perform POST ❷, device initialization and will jump to our bootloader
- 🛗 Years passed and BIOS accumulated many limitations 🕃
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 -

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
- 🛗 Years passed and BIOS accumulated many limitations 🕃
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 - ...

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
- 🛗 Years passed and BIOS accumulated many limitations 😂
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 - ...

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
- 🛗 Years passed and BIOS accumulated many limitations 😂
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 -

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
 - BIOS will perform POST ②, device initialization and will jump to our bootloader
- 🛗 Years passed and BIOS accumulated many limitations 😂
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 - ...

- ¶ Basic Input Output System (BIOS) has been the main booting mechanism for years
 - x86 processors jump to BIOS code in ROM (originally) to execute it
- 🛗 Years passed and BIOS accumulated many limitations 😂
 - 512 byte boot sector
 - 16 bit real mode calls to BIOS
 - ...

- In 1998 Intel started the development of the Intel Boot Initiative (IBI)

 Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EF
- EFI aimed to be a standarized, easier and better BIOS replacement
 Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)
- <u>I</u> UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.)

Nowadays we use UEFI with an extension that support BIOS booting: CSM 5

in 1998 Intel started the development of the Intel Boot Initiative (IBI)

Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI

② EFI aimed to be a standarized, easier and better BIOS replacement

Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)

■ Continuous Conti

<u>m</u> UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.)

Nowadays we use UEFI with an extension that support BIOS booting: CSM 5

In 1998 Intel started the development of the Intel Boot Initiative (IBI)

Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI)

② EFI aimed to be a standarized, easier and better BIOS replacement Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)

<u>III</u> UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.)

Nowadays we use UEFI with an extension that support BIOS booting: CSM 5

- In 1998 Intel started the development of the Intel Boot Initiative (IBI)

 Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI)
- **@** EFI aimed to be a standarized, easier and better BIOS replacement

Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)

🔟 UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.)

Nowadays we use UEFI with an extension that support BIOS booting: CSM 5

- In 1998 Intel started the development of the Intel Boot Initiative (IBI)
 Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI)
- EFI aimed to be a standarized, easier and better BIOS replacement
 Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)
- 🎹 UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.).

Nowadays we use UEFI with an extension that support BIOS booting: CSM 5

- In 1998 Intel started the development of the Intel Boot Initiative (IBI)

 Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI)
- ② EFI aimed to be a standarized, easier and better BIOS replacement Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)
- <u>m</u> UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.).

Nowadays we use UEFI with an extension that support BIOS booting: CSM 5

- In 1998 Intel started the development of the Intel Boot Initiative (IBI)

 Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI)
- EFI aimed to be a standarized, easier and better BIOS replacement
 Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)

Nowadays we use UEFI with an extension that support BIOS booting: CSM 🕽

- In 1998 Intel started the development of the Intel Boot Initiative (IBI)

 Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI)
- ② EFI aimed to be a standarized, easier and better BIOS replacement
 Intel moved EFI v1.10 to Unified Extensible Firmware Interface (UEFI)
- <u>m</u> UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.).

Nowadays we use UEFI with an extension that support BIOS booting: CSM 5

- In 1998 Intel started the development of the Intel Boot Initiative (IBI)

 Intel Boot Initiative (IBI) got renamed to Extensible Firmware Interface (EFI)
- **②** EFI aimed to be a standarized, easier and better BIOS replacement

 Intel moved EFI v1. 10 to Unified Extensible Firmware Interface (UEFI)

 Continuous Cont
- <u>m</u> UEFI was managed by a consortium of companies (AMD, Apple, Microsoft, Intel, etc.).

Nowadays we use UEFI with an extension that support BIOS booting: CSM 3

Secure Boot History

In November 2010, Secure Boot got introduced in the UEFI v2.2 standard

■ Deployment

Consumer deployment was a disaster, by default could only be used by Microsoft

This was seen as a movement to destroy Linux 🐧 . Had to be disabled 😊

Expansion

A solution was found by the Linux 🐧 community, but it was still unpopular

Secure Boot support got introduced in Fedora 18, RHEL 7, Debian 10, Ubuntu 12.04 ...

Secure Boot History

♣ Origin

In November 2010, Secure Boot got introduced in the UEFI v2.2 standard

■ Deployment

Consumer deployment was a disaster, by default could only be used by Microsoft #

This was seen as a movement to destroy Linux 🐧 . Had to be disabled 🟵

Expansion

A solution was found by the Linux Δ community, but it was still unpopular

Secure Boot support got introduced in Fedora 18, RHEL 7, Debian 10, Ubuntu 12.04 ...

Secure Boot History

In November 2010, Secure Boot got introduced in the UEFI v2.2 standard

■ Deployment

Consumer deployment was a disaster, by default could only be used by Microsoft \blacksquare

This was seen as a movement to destroy Linux . Had to be disabled @

Expansion

A solution was found by the Linux Δ community, but it was still unpopular Secure Boot support got introduced in Fedora 18, RHEL 7, Debian 10, Ubuntu 12.04 ...

Secure Boot History

🧚 Origin

In November 2010, Secure Boot got introduced in the UEFI v2.2 standard

■ Deployment

Consumer deployment was a disaster, by default could only be used by Microsoft

This was seen as a movement to destroy Linux 🐧 . Had to be disabled 🟵

Expansion

A solution was found by the Linux Δ community, but it was still unpopular

Secure Boot support got introduced in Fedora 18, RHEL 7, Debian 10, Ubuntu 12.04 ...

☑ UEFI v2.2 provided a protocol to verify a image signature upon execution

Microsoft could sign the bootloader and UEFI would only boot after checking the signature

△ This has more implications that "the bootloader is originally from Microsoft".

Implications

- ✓ We could implement trusted checks against the Operating System
 - ? Filesystem contain signs of malware?
 - ② Are Merkle Tree hashes correct?
- ✓ We could extend the trusted chain to verify more code
 - Is Windows signature authentic too?

☑ UEFI v2.2 provided a protocol to verify a image signature upon execution

Microsoft could sign the bootloader and UEFI would only boot after checking the signature

△ This has more implications that "the bootloader is originally from Microsoft".

Implications

- ✓ We could implement trusted checks against the Operating System
 - ? Filesystem contain signs of malware?
 - ② Are Merkle Tree hashes correct?
- ✓ We could extend the trusted chain to verify more code
 - Is Windows signature authentic too?

☑ UEFI v2.2 provided a protocol to verify a image signature upon execution

Microsoft could sign the bootloader and UEFI would only boot after checking the signature

△ This has more implications that "the bootloader is originally from Microsoft".

Implications

- ✓ We could implement trusted checks against the Operating System
 - ? Filesystem contain signs of malware?
 - ② Are Merkle Tree hashes correct?
- ✓ We could extend the trusted chain to verify more code
 - Is Windows signature authentic too?

☑ UEFI v2.2 provided a protocol to verify a image signature upon execution

Microsoft could sign the bootloader and UEFI would only boot after checking the signature

▲ This has more implications that "the bootloader is originally from Microsoft".

- ✓ We could implement trusted checks against the Operating System
 - ? Filesystem contain signs of malware?
 - ② Are Merkle Tree hashes correct?
- ✓ We could extend the trusted chain to verify more code
 - Is Windows signature authentic too?

☑ UEFI v2.2 provided a protocol to verify a image signature upon execution

Microsoft could sign the bootloader and UEFI would only boot after checking the signature

▲ This has more implications that "the bootloader is originally from Microsoft".

Implications

- ✓ We could implement trusted checks against the Operating System
 - Pilesystem contain signs of malware?
 - ? Are Merkle Tree hashes correct?
- ✓ We could extend the trusted chain to verify more code
 - Is Windows signature authentic too?

- Achieving this goals by using cryptography introduces a new set of challenges.
 - Key Management

 - Key Decommission

. .

- Trust Management
 - ♠ Is Windows Trusted?
 - Who Decides Trust?

. . .

- Root of Trust
 - </> Is UEFI Firmware Trusted?

. . .

in cryptography basically the common suspects in cryptography

Achieving this goals by using cryptography introduces a new set of challenges.

- Key Management

 - Key Decommission

. . .

- Trust Management
 - ♣ Is Windows Trusted?
 - ₩ Who Decides Trust?

. .

- Root of Trust
 - </> Is UEFI Firmware Trusted?

. . .

🚡 basically the common suspects in cryptography

- Achieving this goals by using cryptography introduces a new set of challenges.
 - Key Management

 - Key Decommission

...

- Trust Management
 - ♠ Is Windows Trusted?
 - Who Decides Trust?

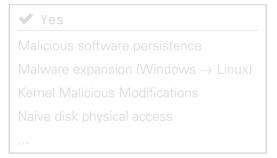
. .

- Root of Trust
 - </> Is UEFI Firmware Trusted?
- A

.... basically the common suspects in cryptography

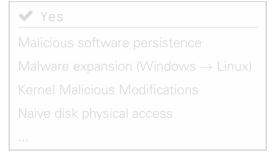
- Achieving this goals by using cryptography introduces a new set of challenges.
 - Key Management

 - Key Decommission
 - ..
 - Trust Management
 - ♣ Is Windows Trusted?
 - **₹** Who Decides Trust?
 - ...
 - Root of Trust
 - </> Is UEFI Firmware Trusted?
- basically the common suspects in cryptography

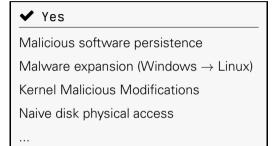

- Achieving this goals by using cryptography introduces a new set of challenges.
 - Key Management


 - Key Decommission
 - Trust Management
 - ♣ Is Windows Trusted?
 - ₩ Who Decides Trust?
 - Root of Trust
 - Is UEFI Firmware Trusted?
- 🟗 basically the common suspects in cryptography

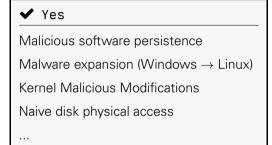
- Achieving this goals by using cryptography introduces a new set of challenges.
 - Key Management

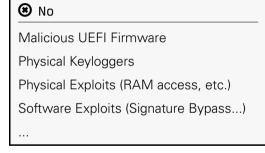

 - Key Decommission
 - Trust Management
 - ♣ Is Windows Trusted?
 - ₩ Who Decides Trust?
 - Root of Trust
 - </> Is UEFI Firmware Trusted?
- a.... basically the common suspects in cryptography

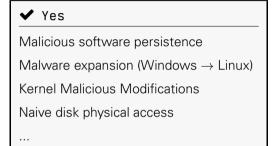

Threat Model

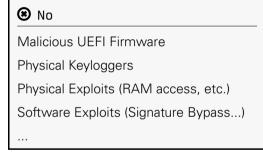


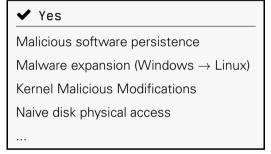

- ▲ Secure Boot is far from being a perfect security measure
- 🎳 Vendor's UEFI has a exploit/backdoor? Secure Boot is defeated. You need to trust in it.
- A regular user may not have this in its threat model

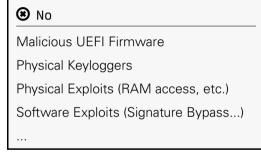


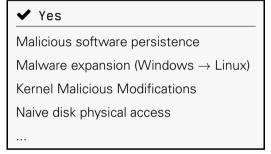

- ▲ Secure Boot is far from being a perfect security measure
- Vendor's UEFI has a exploit/backdoor? Secure Boot is defeated. You need to trust in it.
- A regular user may not have this in its threat model

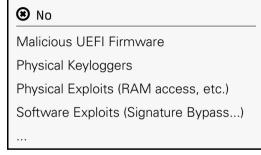



- ▲ Secure Boot is far from being a perfect security measure
- Vendor's UEFI has a exploit/backdoor? Secure Boot is defeated. You need to trust in it.
- A regular user may not have this in its threat mode

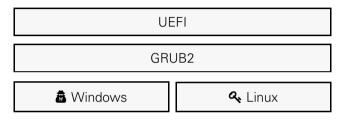



- A Secure Boot is far from being a perfect security measure
- Vendor's UEFI has a exploit/backdoor? Secure Boot is defeated. You need to trust in it.
- A regular user may not have this in its threat model

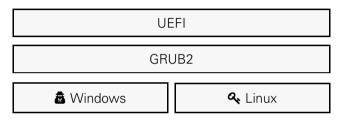



- ▲ Secure Boot is far from being a perfect security measure
- Vendor's UEFI has a exploit/backdoor? Secure Boot is defeated. You need to trust in it.
- A regular user may not have this in its threat mode

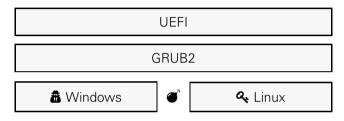
- ▲ Secure Boot is far from being a perfect security measure
- Vendor's UEFI has a exploit/backdoor? Secure Boot is defeated. You need to trust in it.
- A regular user may not have this in its threat model


- ▲ Secure Boot is far from being a perfect security measure
- Vendor's UEFI has a exploit/backdoor? Secure Boot is defeated. You need to trust in it.
- A regular user may not have this in its threat model

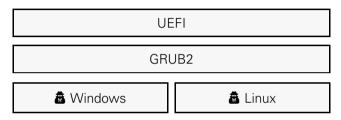
Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.


Eve 🖀 has breached our Windows system and wants to expand to our encrypted 🔦 Linux

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.


Eve 🖀 has breached our Windows system and wants to expand to our encrypted 🔦 Linux

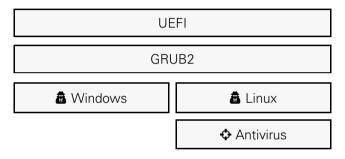
☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.


Eve 🏝 has breached our Windows system and wants to expand to our encrypted 🔦 Linux

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

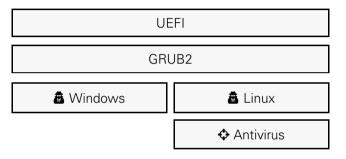
Eve has breached our Windows system and wants to expand to our encrypted 4 Linux Eve modifies the Linux kernel image to run malicious code (at kernel privilege level).

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.



Eve to has breached our Windows system and wants to expand to our encrypted 4 Linux Eve modifies the Linux kernel image to run malicious code (at kernel privilege level).

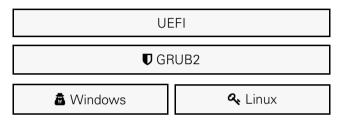
GRUB2 🛡 won't detect the attack and will execute the malicious Linux kernel image 💣


14/64

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.


- **U** But, but I have an antivirus (or any other fancy system).
- Yes, but Eve a has the Kernel.

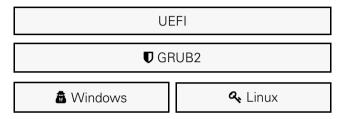
☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.


- **U** But, but I have an antivirus (or any other fancy system).
- Yes, but Eve a has the Kernel.

Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

- GRUB2 verifies Linux Kernel signature
- ...so Eve cannot modify without it getting disallowed
- Eve 🖀 has breached our Windows system and wants to expand to our encrypted 🔩 Linux.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

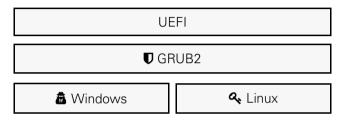


🖒 GRUB2 verifies Linux Kernel signature

...so Eve cannot modify without it getting disallowed

Eve 👼 has breached our Windows system and wants to expand to our encrypted 🔩 Linux.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

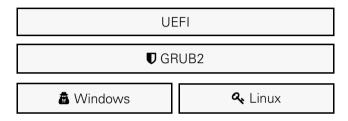


O GRUB2 verifies Linux Kernel signature

...so Eve cannot modify without it getting disallowed

Eve 🖀 has breached our Windows system and wants to expand to our encrypted 🔩 Linux.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

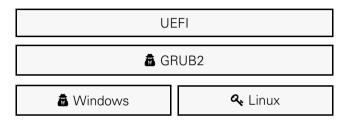


O GRUB2 verifies Linux Kernel signature

...so Eve cannot modify without it getting disallowed.

Eve 🖀 has breached our Windows system and wants to expand to our encrypted 🔩 Linux.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.



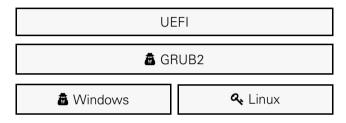
O GRUB2 verifies Linux Kernel signature

...so Eve cannot modify without it getting disallowed.

Eve 🖀 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

O GRUB2 verifies Linux Kernel signature


...so Eve cannot modify without it getting disallowed.

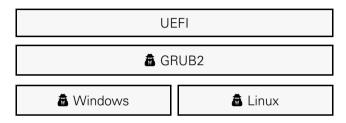
Eve 🕏 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

Eve can modify GRUB2 **V** with a version that doesn't do checks

...UEFI won't complain.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

O GRUB2 verifies Linux Kernel signature


...so Eve cannot modify without it getting disallowed.

Eve 🕏 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

Eve can modify GRUB2 **▼** with a version that doesn't do checks

...UEFI won't complain.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

O GRUB2 verifies Linux Kernel signature


...so Eve cannot modify without it getting disallowed.

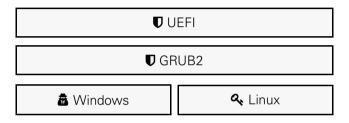
Eve 🕏 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

Eve can modify GRUB2 **▼** with a version that doesn't do checks

...UEFI won't complain. Then modify the Linux kernel image 💣

Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

UEFI verifies GRUB2. GRUB2 verifies Linux.


Eve 🗂 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

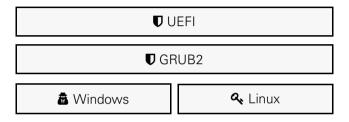
Eve cannot modify Linux kernel image because **T** GRUB2 would notice.

cannot modify GRUB2 image because **U** UEFI would notice.

cannot modify UEFI firmware code without a major attack

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

UEFI verifies GRUB2. GRUB2 verifies Linux.


Eve 🖀 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

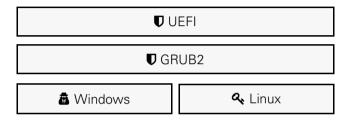
Eve cannot modify Linux kernel image because $\ensuremath{\mathbb{Q}}$ GRUB2 would notice.

cannot modify GRUB2 image because **U** UEFI would notice.

cannot modify UEFI firmware code without a major attack

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

UEFI verifies GRUB2. GRUB2 verifies Linux.


Eve 🕏 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

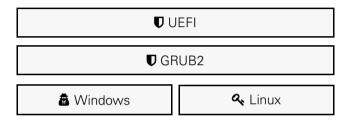
Eve cannot modify Linux kernel image because **T** GRUB2 would notice.

cannot modify GRUB2 image because **U** UEFI would notice.

cannot modify UEFI firmware code without a major attack

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

UEFI verifies GRUB2. GRUB2 verifies Linux.


Eve 🕏 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

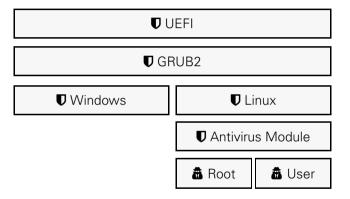
Eve cannot modify Linux kernel image because **U** GRUB2 would notice.

cannot modify GRUB2 image because **▼** UEFI would notice.

cannot modify UEFI firmware code without a major attack

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

UEFI verifies GRUB2. GRUB2 verifies Linux.


Eve 🕏 has breached our Windows system and wants to expand to our encrypted 🔦 Linux.

Eve cannot modify Linux kernel image because **U** GRUB2 would notice.

cannot modify GRUB2 image because **U** UEFI would notice.

cannot modify UEFI firmware code without a major attack.

☐ Dual Boot Windows/Linux Setup. Linux is Full Disk Encrypted with LUKS.

▲ See how it can be extended to other threat models and usecases.

Signature Verification Chain

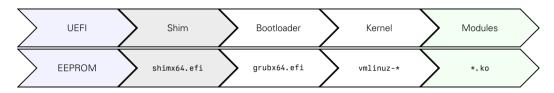
% What does have to verify what, and where?

O Starting in UEFI, each step in the chain verifies the next one.

We will wassume that UEFI is authentic

verify until kernel code

% What does have to verify what, and where?

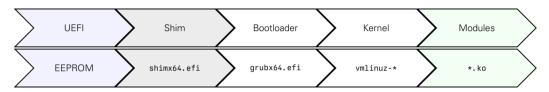


O Starting in UEFI, each step in the chain verifies the next one.

We will 🗹 assume that UEFI is authentic.

verify until kernel code.

% What does have to verify what, and where?

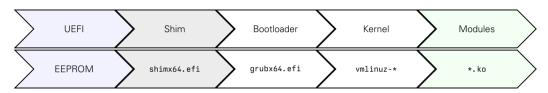


O Starting in UEFI, each step in the chain verifies the next one.

We will sassume that UEFI is authentic.

verify until kernel code

% What does have to verify what, and where?

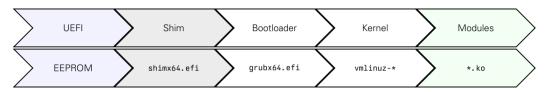


O Starting in UEFI, each step in the chain verifies the next one.

We will assume that UEFI is authentic.

verify until kernel code

% What does have to verify what, and where?

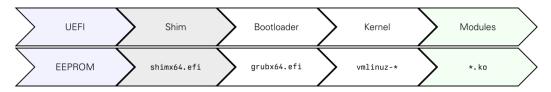


O Starting in UEFI, each step in the chain verifies the next one.

We will **S** assume that UEFI is authentic.

verify until kernel code

% What does have to verify what, and where?

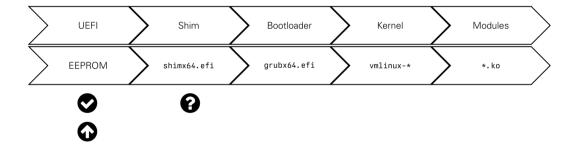


O Starting in UEFI, each step in the chain verifies the next one.

We will **s** assume that UEFI is authentic.

✓ verify until kernel code.

% What does have to verify what, and where?



O Starting in UEFI, each step in the chain verifies the next one.

We will **S** assume that UEFI is authentic.

✓ verify until kernel code.

Stage Roadmap

1 UEFI has 4 important Secure Boot NVRAM (Non Volatile) variables:

△ Contains one RSA 2048 public key certificate (X509) A Root of Trust

1 UEFI has 4 important Secure Boot NVRAM (Non Volatile) variables:

PΚ KFK DB DBX △ Contains one RSA 2048 public key certificate (X509) A Root of Trust

1 UEFI has 4 important Secure Boot NVRAM (Non Volatile) variables:

PK KEK DB DBX

- A PK: Platform Key
- △ Contains one RSA 2048 public key certificate (X509)
- **m** Usually provided by the motherboard vendor
- ▲ Root of Trust

>_ efi-readvar -v PK

PK: List 0, type X509
Signature 0, size 858, owner 3b053091-6c9f-04cc-b1ac-e2a51e3be5f5
CN=ASUSTeK MotherBoard PK Certificate

1 UEFI has 4 important Secure Boot NVRAM (Non Volatile) variables:

PK KEK DB DBX

- KEK: Key Exchange Key
- △ Contains multiple RSA 2048 public key certificates (X509)
- Adding keys require PK signature
- ⚠ Usually from Operating System vendors

>_ efi-readvar -v KEK

KEK: List 1, type X509
Signature 0, size 1532, owner 77fa9abd-0359-4d32-bd60-28f4e78f784b
C=US, ST=Washington, L=Redmond, O=Microsoft Corporation, CN=Microsoft Corporation KEK CA...

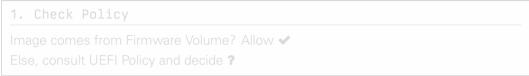
① UEFI has 4 important Secure Boot NVRAM (Non Volatile) variables:

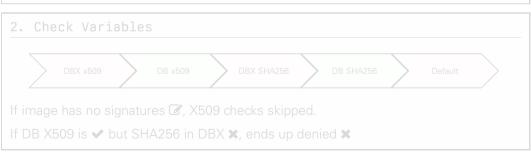
PK KEK DB DBX

- DB: Allow List
- △ Contains multiple RSA 2048 public key certificates (X509) or hashes
- Adding entries require KEK signature
- if signature or hash of a binary matches, allows execution
 - >_ efi-readvar -v db

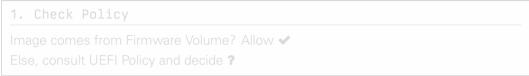
1 UEFI has 4 important Secure Boot NVRAM (Non Volatile) variables:

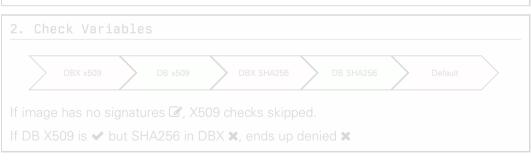
PK KEK DB DBX

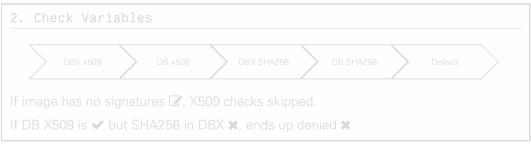


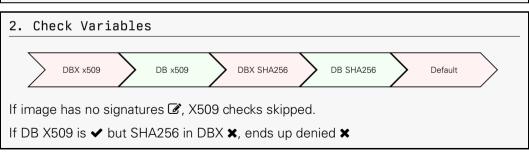

- DBX: Deny List
- △ Contains multiple RSA 2048 public key certificates (X509) or hashes
- Adding entries require KEK signature
- If signature or hash of a binary matches, disallows execution

>_ efi-readvar -v dbx


dbx: List 3, type SHA256
 Signature 0, size 48, owner 77fa9abd-0359-4d32-bd60-28f4e78f784b
 Hash:c55be4a2a6ac574a9d46f1e1c54cac29d29dcd7b9040389e7157bb32c4591c4c


□ A Program Executable (PE) file is fed into UEFI with Secure Boot Enabled:


△ A Program Executable (PE) file is fed into UEFI with Secure Boot Enabled:


△ A Program Executable (PE) file is fed into UEFI with Secure Boot Enabled:

△ A Program Executable (PE) file is fed into UEFI with Secure Boot Enabled:

If Microsoft has released a new bootloader. Wants to include its hash into DB variable

📵 (Time Based) Write Authenticated Variables

- Can be updated from the Operating System (others not!)
- DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's **#** public key certificate in KEK.
- 1. Microsoft signs the new bootloader 🗬 with their own private key.
- 2. Then rolls a new update 📥 that installs the bootloader
- 3. The update also makes a change to DB 🖏, signed by Microsoft
- 4. Our system now accepts the new bootloader ✔

╉ Microsoft has released a new bootloader. Wants to include its hash into DB variable

(Time Based) Write Authenticated Variables

- Can be updated from the Operating System (others not!)
- DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's public key certificate in KEK.
- 1. Microsoft signs the new bootloader 🗬 with their own private key.
- 2. Then rolls a new update 📥 that installs the bootloader
- 3. The update also makes a change to DB 🖏, signed by Microsoft
- 4. Our system now accepts the new bootloader ✓

III Microsoft has released a new bootloader. Wants to include its hash into DB variable

① (Time Based) Write Authenticated Variables

- **2** Can be updated from the Operating System (others not!).
- ◆ DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's public key certificate in KEK.
- 1. Microsoft signs the new bootloader 🗬 with their own private key.
- 2. Then rolls a new update 📥 that installs the bootloader
- 3. The update also makes a change to DB 🦚, signed by Microsoft
- 4. Our system now accepts the new bootloader ✓

III Microsoft has released a new bootloader. Wants to include its hash into DB variable

① (Time Based) Write Authenticated Variables

- **2** Can be updated from the Operating System (others not!).
- DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's **■** public key certificate in KEK.
- 1. Microsoft signs the new bootloader 4 with their own private key.
- 2. Then rolls a new update 📥 that installs the bootloader
- 3. The update also makes a change to DB 🦚, signed by Microsoft
- 4. Our system now accepts the new bootloader ✓

III Microsoft has released a new bootloader. Wants to include its hash into DB variable

① (Time Based) Write Authenticated Variables

- **2** Can be updated from the Operating System (others not!).
- DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's **■** public key certificate in KEK.
- 1. Microsoft signs the new bootloader 4 with their own private key.
- 2. Then rolls a new update 📥 that installs the bootloader
- 3. The update also makes a change to DB 🖏, signed by Microsoft
- 4. Our system now accepts the new bootloader ✓

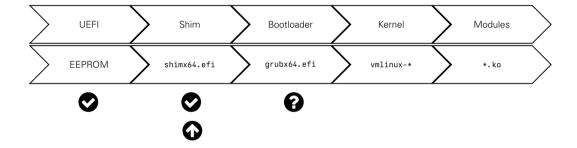
III Microsoft has released a new bootloader. Wants to include its hash into DB variable

① (Time Based) Write Authenticated Variables

- **2** Can be updated from the Operating System (others not!).
- DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's **■** public key certificate in KEK.
- 1. Microsoft signs the new bootloader 4 with their own private key.
- 2. Then rolls a new update **\Lambda** that installs the bootloader
- 3. The update also makes a change to DB 🖏, signed by Microsoft
- 4. Our system now accepts the new bootloader ✓

╉ Microsoft has released a new bootloader. Wants to include its hash into DB variable

① (Time Based) Write Authenticated Variables


- **2** Can be updated from the Operating System (others not!).
- DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's **■** public key certificate in KEK.
- 1. Microsoft signs the new bootloader 4 with their own private key.
- 2. Then rolls a new update **L** that installs the bootloader
- 3. The update also makes a change to DB 🗱, signed by Microsoft
- 4. Our system now accepts the new bootloader ✓

III Microsoft has released a new bootloader. Wants to include its hash into DB variable

① (Time Based) Write Authenticated Variables

- **2** Can be updated from the Operating System (others not!).
- DB/DBX updates require a signed "transaction" with a KEK
- KEK updates require a signed "transaction" with the PK
- 0. We have Microsoft's **■** public key certificate in KEK.
- 1. Microsoft signs the new bootloader 4 with their own private key.
- 2. Then rolls a new update **L** that installs the bootloader
- 3. The update also makes a change to DB 🗱, signed by Microsoft
- 4. Our system now accepts the new bootloader ✓

Stage Roadmap

Shim Stage: Introduction

- ⚠ If device vendors sell devices with Microsoft's keys only, Linux won't work by default
- We could force vendors to ship keys from Canonical, Red Hat and other big players.
- Small Distributions wouldn't work with Secure Boot

⇔ Shim

EFI program that will manage verification with additional keys.

- Oeveloped by the Red Hat Bootloader Team, used everywhere
- Small, Simple and Robust Code. Open Source.
- Reproducible Builds

Shim Stage: Introduction

- ▲ If device vendors sell devices with Microsoft's keys only, Linux won't work by default
- We could force vendors to ship keys from Canonical, Red Hat and other big players.
- Small Distributions wouldn't work with Secure Boot
 - **\$** Shim

EFI program that will manage verification with additional keys.

- Developed by the Red Hat Bootloader Team, used everywhere
- Small, Simple and Robust Code. Open Source.
- Reproducible Builds

Shim Stage: Introduction

- ▲ If device vendors sell devices with Microsoft's keys only, Linux won't work by default
- We could force vendors to ship keys from Canonical, Red Hat and other big players.
- Small Distributions wouldn't work with Secure Boot
 - **\$** Shim

EFI program that will manage verification with additional keys.

- Developed by the Red Hat Bootloader Team, used everywhere
- Small, Simple and Robust Code. Open Source.
- Reproducible Builds

- ▲ If device vendors sell devices with Microsoft's keys only, Linux won't work by default
- We could force vendors to ship keys from Canonical, Red Hat and other big players.
- P Small Distributions wouldn't work with Secure Boot.
 - **⇔** Shim

EFI program that will manage verification with additional keys.

- Oeveloped by the Red Hat Bootloader Team, used everywhere
- Small, Simple and Robust Code. Open Source.
- Reproducible Builds

Ask Microsoft to sign the Shim, and then we could manage the keys as we want. Fedora's shim is signed by Microsoft ③

- A If device vendors sell devices with Microsoft's keys only, Linux won't work by default
- We could force vendors to ship keys from Canonical, Red Hat and other big players.
- P Small Distributions wouldn't work with Secure Boot.

😋 Shim

EFI program that will manage verification with additional keys.

- Developed by the Red Hat Bootloader Team, used everywhere
- Small, Simple and Robust Code. Open Source.
- Reproducible Builds

- A If device vendors sell devices with Microsoft's keys only, Linux won't work by default
- We could force vendors to ship keys from Canonical, Red Hat and other big players.
- P Small Distributions wouldn't work with Secure Boot.

😋 Shim

EFI program that will manage verification with additional keys.

- Developed by the Red Hat Bootloader Team, used everywhere
- Small, Simple and Robust Code. Open Source.
- Reproducible Builds
- Ask Microsoft to sign the Shim, and then we could manage the keys as we want.

Fedora's shim is signed by Microsoft ©

- A If device vendors sell devices with Microsoft's keys only, Linux won't work by default
- We could force vendors to ship keys from Canonical, Red Hat and other big players.
- P Small Distributions wouldn't work with Secure Boot.

😋 Shim

EFI program that will manage verification with additional keys.

- Developed by the Red Hat Bootloader Team, used everywhere
- Small, Simple and Robust Code. Open Source.
- Reproducible Builds

Ask Microsoft to sign the Shim, and then we could manage the keys as we want.

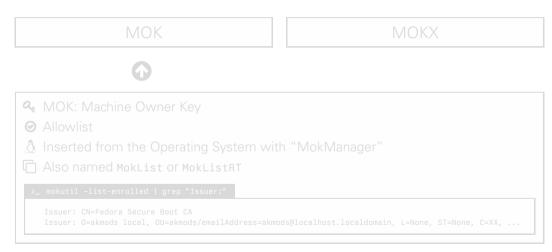
Fedora's shim is signed by Microsoft ©

>_ sudo osslsigncode verify /boot/efi/EFI/fedora/shimx64.efi

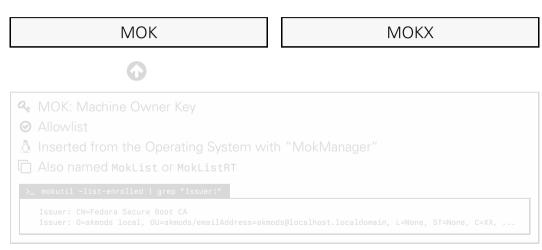
```
Signer #0:
    Subject: /C=US/ST=Washington/L=Redmond/0=Microsoft Corporation/CN=Microsoft Windows UEFI Driver
         Puhlisher
    Issuer: /C=US/ST=Washington/L=Redmond/O=Microsoft Corporation/CN=Microsoft Corporation UEFI CA 2011
    Serial: 3300000048C9DA2834CCE76565000100000048
    Certificate expiration date:
        notBefore: Sep 9 19:40:20 2021 GMT
        notAfter: Sep 1 19:40:20 2022 GMT
Signer #1:
    Subject: /C=US/ST=Washington/L=Redmond/O=Microsoft Corporation/CN=Microsoft Corporation UEFI CA 2011
    Issuer: /C=US/ST=Washington/L=Redmond/O=Microsoft Corporation/CN=Microsoft Corporation Third Party
         Marketplace Root
    Serial: 6108D3C4000000000000
    Certificate expiration date:
        notRefore : Jun 27 21:22:45 2011 GMT
        notAfter: Jun 27 21:32:45 2026 GMT
Authenticated attributes:
    Microsoft Individual Code Signing purpose
    Message digest: 6C96095DF9D18B0F19E694091BC43BA08FC73E802BC3B279D4E5FE777542FBD7
    URL description: https://www.microsoft.com/en-us/windows
    Text description: Red Hat, Inc.
```

1 Shim introduces 2 new variables:

MOK MOKX



- MOK: Machine Owner Key
- Allowlist
- A Inserted from the Operating System with "MokManager"
- Also named MokList or MokListR1
- >_ mokutil -list-enrolled | grep "Issuer:"


Issuer: CN=Fedora Secure Boot CA

Issuer: O=akmods local, OU=akmods/emailAddress=akmods@localhost.localdomain, L=None, ST=None, C=XX, ...

1 Shim introduces 2 new variables:

1 Shim introduces 2 new variables:

1 Shim introduces 2 new variables:

MOK MOKX

- MOK: Machine Owner Key
- Allowlist
- A Inserted from the Operating System with "MokManager"
- Also named MokList or MokListRT
 - >_ mokutil -list-enrolled | grep "Issuer:"

Issuer: CN=Fedora Secure Boot CA

Issuer: O=akmods local, OU=akmods/emailAddress=akmods@localhost.localdomain, L=None, ST=None, C=XX, ...

1 Shim introduces 2 new variables:

MOK **MOKX** MOK: Machine Owner (Denv) Kev Denylist A Inserted from the Operating System with "MokManager" ☐ Also named MokListX or MokListXRT >_ mokutil -X -list-enrolled | grep "Issuer:" [empty] [empty]

No Secure Boot? Allow ✔

△ A Program Executable (PE) file is fed into the Shim:

△ A Program Executable (PE) file is fed into the Shim:

0. Install Verification Protocol

Register a UEFI protocol for Secure Boot verification.

1. Check Secure Boot

No Secure Boot? Allow ✔

Check Variables

DBX MokListX DB MokList Shim Build Key Shim Included Key Default

Note: Merged hash and signature checks in the diagram for brevity

△ A Program Executable (PE) file is fed into the Shim:

0. Install Verification Protocol

Register a UEFI protocol for Secure Boot verification.

1. Check Secure Boot

No Secure Boot? Allow ✓

△ A Program Executable (PE) file is fed into the Shim:

0. Install Verification Protocol

Register a UEFI protocol for Secure Boot verification.

1. Check Secure Boot

No Secure Boot? Allow ✓

2. Check Variables

Note: Merged hash and signature checks in the diagram for brevity.

• A developer releases custom signed bootloaders. We want to use them with SB.

- We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- No Shim code is authentic, attackers cannot do their tricks there
- 0. Developer gives us its public key certificate
- mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previously introduced random password

• A developer releases custom signed bootloaders. We want to use them with SB.

- C We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- No Shim code is authentic, attackers cannot do their tricks there
- 0. Developer gives us its public key certificate
- mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previosly introduced random password

• A developer releases custom signed bootloaders. We want to use them with SB.

- 2 We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- No Shim code is authentic, attackers cannot do their tricks there
- 0. Developer gives us its public key certificate
- mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previosly introduced random password

• A developer releases custom signed bootloaders. We want to use them with SB.

Shim variables can only be update through the "MokManager"

- 2 We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- No Shim code is authentic, attackers cannot do their tricks there

0. Developer gives us its public key certificate

- 1. mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previosly introduced random password

• A developer releases custom signed bootloaders. We want to use them with SB.

- 2 We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- Shim code is authentic, attackers cannot do their tricks there
- 0. Developer gives us its public key certificate
- mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previosly introduced random password

• A developer releases custom signed bootloaders. We want to use them with SB.

- 2 We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- No Shim code is authentic, attackers cannot do their tricks there
- 0. Developer gives us its public key certificate
- mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previosly introduced random password

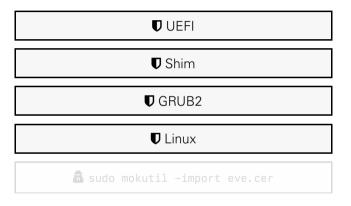
• A developer releases custom signed bootloaders. We want to use them with SB.

- 2 We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- No Shim code is authentic, attackers cannot do their tricks there
- 0. Developer gives us its public key certificate
- mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previosly introduced random password

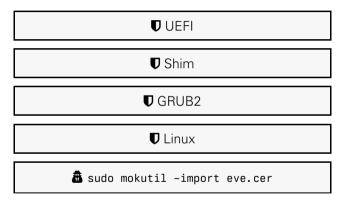
• A developer releases custom signed bootloaders. We want to use them with SB.

- 2 We request an addition from the operating system (mokutil)
- ② During the next boot, shim will ask us if we want to enroll it
- Shim code is authentic, attackers cannot do their tricks there
- 0. Developer gives us its public key certificate
- mokutil -import devkey.cer
- 2. Asks us for a random password
- 3. While booting, shim will open its MokManager and will ask to enroll the key
- 4. We would have to enter the previosly introduced random password

■ Bob has Linux with Secure Boot Enabled. Eve wants to modify GRUB2


Eve 🖥 achieved root, uses mokutil to insert her key. She enters a password.

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2


Eve 🐻 achieved root, uses mokutil to insert her key. She enters a password.

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2

Eve 🧥 achieved root, uses mokutil to insert her key. She enters a password.

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2

Eve \mathbf{a} achieved root, uses mokutil to insert her key. She enters a password.

☐ Bob has Linux with Secure Boot Enabled. Eve 着 wants to modify GRUB2

Bob, a non power user, reboots the computer. After the reboot, a big blue screen pops.

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2

Bob, a non power user, reboots the computer. After the reboot, a big blue screen pops.

☐ Bob has Linux with Secure Boot Enabled. Eve 着 wants to modify GRUB2

② Enrolling is not trivial. Bob doesn't even know what to do. And that's nice.

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2

Magically Bob ends up enrolling that specific key, but gets asked for a password.

The password is Eve's 👼 password

Bob doesn't know what password it's talking about

Eve 🗂 can't trick Bob in any way, she cannot run code here

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2

Magically Bob ends up enrolling that specific key, but gets asked for a password.

The password is Eve's 👼 password

Bob doesn't know what password it's talking about

Eve 🗂 can't trick Bob in any way, she cannot run code here

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2

Magically Bob ends up enrolling that specific key, but gets asked for a password.

The password is Eve's 🛱 password

Bob doesn't know what password it's talking about

Eve a can't trick Bob in any way, she cannot run code here

☐ Bob has Linux with Secure Boot Enabled. Eve 🕏 wants to modify GRUB2

Magically Bob ends up enrolling that specific key, but gets asked for a password.

The password is Eve's a password

Bob doesn't know what password it's talking about

Eve 🗂 can't trick Bob in any way, she cannot run code here

☐ Bob has Linux with Secure Boot Enabled. Eve 🖥 wants to modify GRUB2

Magically Bob ends up enrolling that specific key, but gets asked for a password.

The password is Eve's 👼 password

Bob doesn't know what password it's talking about

Eve a can't trick Bob in any way, she cannot run code here

☐ Bob has Linux with Secure Boot Enabled. Eve 🖥 wants to modify GRUB2

Magically Bob ends up enrolling that specific key, but gets asked for a password.

The password is Eve's 🛱 password

Bob doesn't know what password it's talking about

Eve a can't trick Bob in any way, she cannot run code here

Tom has Linux with Secure Boot Enabled. Eve a wants to modify GRUB2.

Eve a inserts a new key with mokutil.

Tom has Linux with Secure Boot Enabled. Eve a wants to modify GRUB2.

Eve a inserts a new key with mokutil.

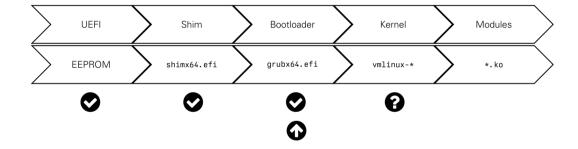
Tom has Linux with Secure Boot Enabled. Eve a wants to modify GRUB2.

Eve a inserts a new key with mokutil.

Tom has Linux with Secure Boot Enabled. Eve a wants to modify GRUB2.

Eve a inserts a new key with mokutil.

Tom has Linux with Secure Boot Enabled. Eve a wants to modify GRUB2.


Eve a inserts a new key with mokutil.

Tom is a power user, he sees the following after doing a regular reboot:

Tom puts the computer in flames (or wouldn't install the key). Eve 🕏 plain fails 🗶

Stage Roadmap

- 3 Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled
 - 1. Enables GRUB2 Lockdown Mode
 - D Lockdown Mode

Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

- © Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled
 - 1. Enables GRUB2 Lockdown Mode

Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

- 3 Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled:
 - Enables GRUB2 Lockdown Mode
 - U Lockdown Mode

Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

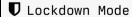
- 3 Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled:
 - 1. Enables GRUB2 Lockdown Mode

Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

- ② Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled:
 - 1. Enables GRUB2 Lockdown Mode

Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

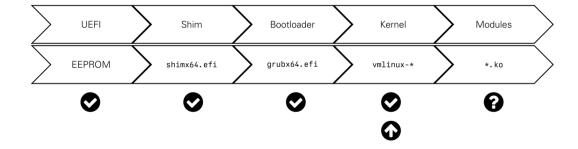
- © Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled:
 - 1. Enables GRUB2 Lockdown Mode


Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

- 3 Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled:
 - 1. Enables GRUB2 Lockdown Mode

Disables GRUB2 "dangerous" functionalities: outb, outw, outl, write_byte....

- 3 Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled:
 - 1. Enables GRUB2 Lockdown Mode


Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

- ② Bootloader stage is going to be the easiest one to learn, promise
- Remember how we said that Shim installed a "UEFI protocol"?
- Q GRUB will look for that protocol, and use it for verification. Shim stage applies here
- You can see it as passing the function pointer and reusing code
- So GRUB does two extra things if secure boot is enabled:
 - 1. Enables GRUB2 Lockdown Mode

□ Lockdown Mode

Disables GRUB2 "dangerous" functionalities: outb, outw, out1, write_byte....

Stage Roadmap

- ► We verified and loaded the kernel? Did we finish the chain?
- ? Well, depends...
- ∆ Linux Kernel is modular, we can load kernel code at runtime. It has to be verified too
- 🖺 We have to verify kernel objects . ko files
- 🖏 Verification process & keys used is a bit differen

- ► We verified and loaded the kernel? Did we finish the chain?
- ? Well, depends...
- ∆ Linux Kernel is modular, we can load kernel code at runtime. It has to be verified too
- 🖺 We have to verify kernel objects . ko files
- Verification process & keys used is a bit different

- ► We verified and loaded the kernel? Did we finish the chain?
- Well, depends...
- ∆ Linux Kernel is modular, we can load kernel code at runtime. It has to be verified too
- 🖺 We have to verify kernel objects . ko files
- Verification process & keys used is a bit different

- ► We verified and loaded the kernel? Did we finish the chain?
- Well, depends...
- ⚠ Linux Kernel is modular, we can load kernel code at runtime. It has to be verified too
- We have to verify kernel objects . ko files
- Verification process & keys used is a bit different

- ► We verified and loaded the kernel? Did we finish the chain?
- Well, depends...
- & Linux Kernel is modular, we can load kernel code at runtime. It has to be verified too
- We have to verify kernel objects . ko files
- 🖏 Verification process & keys used is a bit differen

- ► We verified and loaded the kernel? Did we finish the chain?
- Well, depends...
- ∆ Linux Kernel is modular, we can load kernel code at runtime. It has to be verified too
- We have to verify kernel objects . ko files
- 🖏 Verification process & keys used is a bit differen

- ► We verified and loaded the kernel? Did we finish the chain?
- Well, depends...
- ∆ Linux Kernel is modular, we can load kernel code at runtime. It has to be verified too
- We have to verify kernel objects . ko files
- Verification process & keys used is a bit different

1 Kernel has a complex system for key management: keyring

SECONDARY_KEYRING

PRIMARY_KEYRING

- Uses .secondary_trusted_keys or .builtin_trusted_keys
 - .secondary_trusted_keys contains MOK added keys
 - .builting_trusted_keys are bundled in the kernel at compile time
- Depending on compile time kernel options
- >_ sudo keyctl show %:.secondary_trusted_keys

```
959992111 ---lswrv keyring: .machine
```

1053431220 ---lswrv asymmetric: Fedora Secure Boot CA: fde32599c2d61db1bf5807335d7b20e4cd963b42

463485773 ---Iswrv asymmetric: akmods local signing CA: 85f92b454b0b00bcccc2dd0a76640023153bed01

• Kernel has a complex system for key management: keyring

SECONDARY_KEYRING

PRIMARY_KEYRING

- Uses .secondary_trusted_keys or .builtin_trusted_keys
 - .secondary_trusted_keys contains MOK added keys
 - .builting_trusted_keys are bundled in the kernel at compile time
- Depending on compile time kernel options
- >_ sudo keyctl show %:.secondary_trusted_keys

```
959992111 ---lswrv keyring: .machine
```

463485773 ---lswrv asymmetric: akmods local signing CA: 85f92b454b0b00bcccc2dd0a76640023153bed01

• Kernel has a complex system for key management: keyring

SECONDARY_KEYRING

PRIMARY_KEYRING

- Uses .secondary_trusted_keys or .builtin_trusted_keys
 - .secondary_trusted_keys contains MOK added keys
 - .builting_trusted_keys are bundled in the kernel at compile time
- Depending on compile time kernel options

>_ sudo keyctl show %:.secondary_trusted_keys

959992111 ---lswrv keyring: .machine 1053431220 ---lswrv asymmetric: Fedora Secure Boot CA: fde32599c2d61db1bf5807335d7b20e4cd963b42 463485773 ---lswrv asymmetric: akmods local signing CA: 85f92b454b0b00bcccc2dd0a76640023153bed01

1 Kernel has a complex system for key management: keyring

SECONDARY_KEYRING

PRIMARY_KEYRING

- Uses .secondary_trusted_keys or .builtin_trusted_keys
 - .secondary_trusted_keys contains MOK added keys
 - .builting_trusted_keys are bundled in the kernel at compile time
- Depending on compile time kernel options
- >_ sudo keyctl show %:.secondary_trusted_keys

```
959992111 ---lswrv keyring: .machine
1053431220 ---lswrv asymmetric: Fedora Secure Boot CA: fde32599c2d61db1bf5807335d7b20e4cd963b42
463485773 ---lswrv asymmetric: akmods local signing CA: 85f92b454b0b00bcccc2dd0a76640023153bed01
```

• Kernel has a complex system for key management: keyring

SECONDARY_KEYRING

PRIMARY_KEYRING

- Uses .platform_trusted_keys or null
 - .platform_trusted_keys contains UEFI DB keys
 null is nothing
- Depending on compile time kernel options

>_ sudo keyctl show %:.platform

496716708 ---lswrv keyring: .platform
788952781 ---lswrv asymmetric: ASUSTeK MotherBoard SW Key Certificate: da83b990422ebc8c441f8d8b039a65a2
944196719 ---lswrv asymmetric: Canonical Ltd. Master Certificate Authority: ad91990bc22ab1f517048c23...

- % Kernel has a different signature verification system
- > For each keyring, checked in this order:

- Checks if signature key is in .blacklist_keyring. If it's the case, denies ∅
 - A Yes, the denylist is a custom one
- 2. Verifies if signature key is in the checked keyring. If its the case, allows $oldsymbol{\oslash}$

- % Kernel has a different signature verification system
- > For each keyring, checked in this order:

- Checks if signature key is in .blacklist_keyring. If it's the case, denies ∅
 - A Yes, the denylist is a custom one
- 2. Verifies if signature key is in the checked keyring. If its the case, allows $oldsymbol{\oslash}$

- % Kernel has a different signature verification system
- > For each keyring, checked in this order:

- 1. Checks if signature key is in <code>.blacklist_keyring</code>. If it's the case, denies $oldsymbol{arrho}$
 - A Yes, the denylist is a custom one
- 2. Verifies if signature key is in the checked keyring. If its the case, allows $oldsymbol{\oslash}$

- % Kernel has a different signature verification system
- > For each keyring, checked in this order:

- Checks if signature key is in .blacklist_keyring. If it's the case, denies ❷
 - A Yes, the denylist is a custom one
- 2. Verifies if signature key is in the checked keyring. If its the case, allows

- % Kernel has a different signature verification system
- > For each keyring, checked in this order:

- 1. Checks if signature key is in .blacklist_keyring. If it's the case, denies ②
 - ▲ Yes, the denylist is a custom one
- 2. Verifies if signature key is in the checked keyring. If its the case, allows ②

- % Kernel has a different signature verification system
- > For each keyring, checked in this order:

- Checks if signature key is in .blacklist_keyring. If it's the case, denies ❷
 - A Yes, the denylist is a custom one
- 2. Verifies if signature key is in the checked keyring. If its the case, allows •

Kernel Stage: Lockdown Mode

■ Kernel enables a lockdown mode when secure boot is enabled

```
>_ dmesg | grep kernel_lockdown

kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7

kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7

kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7
```

So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd
 -

Kernel Stage: Lockdown Mode

■ Kernel enables a lockdown mode when secure boot is enabled.

```
kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7
kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7
kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7
```

So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities:
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd
 -

■ Kernel enables a lockdown mode when secure boot is enabled.

kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7 kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7 kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7

So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities:
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd
 - ...

■ Kernel enables a lockdown mode when secure boot is enabled.

```
kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7
kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7
kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7
```

So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities:
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd
 - ...

■ Kernel enables a lockdown mode when secure boot is enabled

```
kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7
kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7
kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7
```

So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities:
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd

• ...

■ Kernel enables a lockdown mode when secure boot is enabled

```
kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7
kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7
kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7
```

So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities:
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd

• ..

■ Kernel enables a lockdown mode when secure boot is enabled

```
kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7
kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7
kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7
```

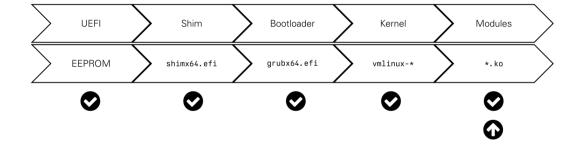
■ So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities:
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd

• ...

■ Kernel enables a lockdown mode when secure boot is enabled


kern :notice: [...] Kernel is locked down from EFI Secure Boot mode; see man kernel_lockdown.7 kern :notice: [...] Lockdown: swapper/0: hibernation is restricted; see man kernel_lockdown.7 kern :notice: [...] Lockdown: systemd-logind: hibernation is restricted; see man kernel_lockdown.7

So... let's read the manual

"The Kernel Lockdown feature is designed to prevent both direct and indirect access to a running kernel image, attempting to protect against unauthorized modification of the kernel image..."

- Disabled Kernel functionalities:
 - Unencrypted hibernation/suspend to swap
 - Only validated signed binaries can be kexec'd
 -

Stage Roadmap

Past Vulnerabilities

- © In 2016 Microsoft released a signed bootloader in a Windows Update
- (2) It was a Debug Build
- Debug builds had signature checks disabled
- ② What we do now? How do we fix it?
- 🗮 Easy! Another Windows Update rollbacking the bootloader
 - a Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- 1 In 2016 Microsoft released a signed bootloader in a Windows Update
- (a) It was a Debug Build
- Debug builds had signature checks disabled
- ② What we do now? How do we fix it?
- 📕 Easy! Another Windows Update rollbacking the bootloader
 - a Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- © In 2016 Microsoft released a signed bootloader in a Windows Update
- (2) It was a Debug Build
- Debug builds had signature checks disabled
- 3 What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- (2) In 2016 Microsoft released a signed bootloader in a Windows Update
- (2) It was a Debug Build
- Debug builds had signature checks disabled
- 3 What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- In 2016 Microsoft released a signed bootloader in a Windows Update
- It was a Debug Build
- Debug builds had signature checks disabled
- What we do now? How do we fix it?
- 🗮 Easy! Another Windows Update rollbacking the bootloader
 - a Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- In 2016 Microsoft released a signed bootloader in a Windows Update
- It was a Debug Build
- ② Debug builds had signature checks disabled
- What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - a Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- In 2016 Microsoft released a signed bootloader in a Windows Update
- It was a Debug Build
- Debug builds had signature checks disabled
- What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - **a** Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- In 2016 Microsoft released a signed bootloader in a Windows Update
- It was a Debug Build
- Debug builds had signature checks disabled
- What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- In 2016 Microsoft released a signed bootloader in a Windows Update
- It was a Debug Build
- Debug builds had signature checks disabled
- What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - **a** Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- In 2016 Microsoft released a signed bootloader in a Windows Update
- It was a Debug Build
- Debug builds had signature checks disabled
- What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - **a** Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- In 2016 Microsoft released a signed bootloader in a Windows Update
- It was a Debug Build
- Debug builds had signature checks disabled
- What we do now? How do we fix it?
- Easy! Another Windows Update rollbacking the bootloader
 - **a** Can Eve use it to break Secure Boot Chains?
 - 1. Swap the original bootloader with the debug one
 - 2. UEFI won't care, it's signed
 - 3. Change the kernel, there are no signature checks

- © Security researchers reviewed GRUB2 code
- They found a buffer overflow in grub.cfg that skipped signature checks
- More than 150 GRUB2 different signed builds
- 3 What's the big deal? Why should we care? We already have a DBX, right?
- ☐ Yes, but it's an NVRAM variable, it has a size limit

- © Security researchers reviewed GRUB2 code
- They found a buffer overflow in grub.cfg that skipped signature checks
- ☼ More than 150 GRUB2 different signed builds
- 3 What's the big deal? Why should we care? We already have a DBX, right?
- → Yes, but it's an NVRAM variable, it has a size limit

- © Security researchers reviewed GRUB2 code
- They found a buffer overflow in grub.cfg that skipped signature checks
- ☼ More than 150 GRUB2 different signed builds
- What's the big deal? Why should we care? We already have a DBX, right?
- → Yes, but it's an NVRAM variable, it has a size limi

- © Security researchers reviewed GRUB2 code
- They found a buffer overflow in grub.cfg that skipped signature checks
- ☼ More than 150 GRUB2 different signed builds
- ② What's the big deal? Why should we care? We already have a DBX, right?

- © Security researchers reviewed GRUB2 code
- They found a buffer overflow in grub.cfg that skipped signature checks
- ⊗ More than 150 GRUB2 different signed builds
- What's the big deal? Why should we care? We already have a DBX, right?
- → Yes, but it's an NVRAM variable, it has a size limit

- © Security researchers reviewed GRUB2 code
- They found a buffer overflow in grub.cfg that skipped signature checks
- ⊗ More than 150 GRUB2 different signed builds
- What's the big deal? Why should we care? We already have a DBX, right?
- ☐ Yes, but it's an NVRAM variable, it has a size limit

- © Security researchers reviewed GRUB2 code
- They found a buffer overflow in grub.cfg that skipped signature checks
- ⊗ More than 150 GRUB2 different signed builds
- What's the big deal? Why should we care? We already have a DBX, right?
- ☐ Yes, but it's an NVRAM variable, it has a size limit

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- Expiration times! We don't have a infinitely growing denylist
- Could we have expiration times in Secure Boot?
 - **x** Is the time trusted?
 - * What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - ➤ No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- Expiration times! We don't have a infinitely growing denylist
- ② Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - * What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - ➤ No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- Expiration times! We don't have a infinitely growing denylist
- ② Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - * What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - ➤ No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- Expiration times! We don't have a infinitely growing denylist
- Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - * What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - ➤ No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- O Expiration times! We don't have a infinitely growing denylist
- ② Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - * What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - ➤ No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- O Expiration times! We don't have a infinitely growing denylist
- Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - ★ What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- O Expiration times! We don't have a infinitely growing denylist
- Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - ★ What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- Expiration times! We don't have a infinitely growing denylist
- **?** Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - ★ What if I don't turn on the computer for a long time?
- ② Could we remove entries from DBX to save space in a future?
 - No! What if Eve reverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- Expiration times! We don't have a infinitely growing denylist
- Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - ★ What if I don't turn on the computer for a long time?
- **②** Could we remove entries from DBX to save space in a future?
 - ✗ No! What if Eve areverts to that version to break secure boot?

- Remember what was the problem with JWT tokens?
- We had to mantain a denylist in order to remove access from certain tokens
- But JWT usually have a field that makes this not a problem...
- Expiration times! We don't have a infinitely growing denylist
- **?** Could we have expiration times in Secure Boot?
 - **★** Is the time trusted?
 - ★ What if I don't turn on the computer for a long time?
- Could we remove entries from DBX to save space in a future?
 - ★ No! What if Eve reverts to that version to break secure boot?

Secure Boot Advanced Targeting (SBAT) is the proposed solution

- 1 sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
- 2 grub, 1, Free Software Foundation, grub, 2.02, https://www.gnu.org/software/grub/
- 3 grub.fedora,1,Red Hat Enterprise Linux,grub2,2.02-0.34.fc24,mail:secalert@redhat.com
- 4 grub.rhel, 1, Red Hat Enterprise Linux, grub2, 2.02-0.34.el7_2, mail:secalert@redhat.com
- 1. Signed metadata .sbat section on each executable
- Use that metadata to revoke a whole range of versions at once
- "Grub 2.x had a vulnerability, deny all of them, no matter which vendor comes from"
- 1 Technique used in the Shim but not standarized in UEF

© Secure Boot Advanced Targeting (SBAT) is the proposed solution

- 1 sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
- 2 grub, 1, Free Software Foundation, grub, 2.02, https://www.gnu.org/software/grub,
- 3 grub.fedora,1,Red Hat Enterprise Linux,grub2,2.02-0.34.fc24,mail:secalert@redhat.com
- 4 grub.rhel,1,Red Hat Enterprise Linux,grub2,2.02-0.34.el7_2,mail:secalert@redhat.com
- 1. Signed metadata .sbat section on each executable
- 2. Use that metadata to revoke a whole range of versions at once
- "Grub 2.x had a vulnerability, deny all of them, no matter which vendor comes from"
- 1 Technique used in the Shim but not standarized in UEF

© Secure Boot Advanced Targeting (SBAT) is the proposed solution

- 1 sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
- 2 grub, 1, Free Software Foundation, grub, 2.02, https://www.gnu.org/software/grub/
- 3 grub.fedora,1,Red Hat Enterprise Linux,grub2,2.02-0.34.fc24,mail:secalert@redhat.com
- 4 grub.rhel,1,Red Hat Enterprise Linux,grub2,2.02-0.34.el7_2,mail:secalert@redhat.com
- 1. Signed metadata .sbat section on each executable
- 2. Use that metadata to revoke a whole range of versions at once
- "Grub 2.x had a vulnerability, deny all of them, no matter which vendor comes from"
- 1 Technique used in the Shim but not standarized in UEF

© Secure Boot Advanced Targeting (SBAT) is the proposed solution

- 1 sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
- 2 grub, 1, Free Software Foundation, grub, 2.02, https://www.gnu.org/software/grub/
- 3 grub.fedora,1,Red Hat Enterprise Linux,grub2,2.02-0.34.fc24,mail:secalert@redhat.com
- 4 grub.rhel,1,Red Hat Enterprise Linux,grub2,2.02-0.34.el7_2,mail:secalert@redhat.com
- 1. Signed metadata .sbat section on each executable
- 2. Use that metadata to revoke a whole range of versions at once
- "Grub 2.x had a vulnerability, deny all of them, no matter which vendor comes from"
- 1 Technique used in the Shim but not standarized in UEF

© Secure Boot Advanced Targeting (SBAT) is the proposed solution

- 1 sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
- 2 grub, 1, Free Software Foundation, grub, 2.02, https://www.gnu.org/software/grub/
- 3 grub.fedora,1,Red Hat Enterprise Linux,grub2,2.02-0.34.fc24,mail:secalert@redhat.com
- 4 grub.rhel,1,Red Hat Enterprise Linux,grub2,2.02-0.34.el7_2,mail:secalert@redhat.com
- 1. Signed metadata .sbat section on each executable
- 2. Use that metadata to revoke a whole range of versions at once
- "Grub 2.x had a vulnerability, deny all of them, no matter which vendor comes from"
- 1 Technique used in the Shim but not standarized in UEF

© Secure Boot Advanced Targeting (SBAT) is the proposed solution

- 1 sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
- 2 grub, 1, Free Software Foundation, grub, 2.02, https://www.gnu.org/software/grub/
- 3 grub.fedora,1,Red Hat Enterprise Linux,grub2,2.02-0.34.fc24,mail:secalert@redhat.com
- 4 grub.rhel,1,Red Hat Enterprise Linux,grub2,2.02-0.34.el7_2,mail:secalert@redhat.com
- 1. Signed metadata .sbat section on each executable
- 2. Use that metadata to revoke a whole range of versions at once
- 3. "Grub 2.x had a vulnerability, deny all of them, no matter which vendor comes from"
- Technique used in the Shim but not standarized in UEFI

© Secure Boot Advanced Targeting (SBAT) is the proposed solution

- sbat,1,SBAT Version,sbat,1,https://github.com/rhboot/shim/blob/main/SBAT.md
- 2 grub, 1, Free Software Foundation, grub, 2.02, https://www.gnu.org/software/grub/
- 3 grub.fedora,1,Red Hat Enterprise Linux,grub2,2.02-0.34.fc24,mail:secalert@redhat.com
- 4 grub.rhel,1,Red Hat Enterprise Linux,grub2,2.02-0.34.el7_2,mail:secalert@redhat.com
- 1. Signed metadata . sbat section on each executable
- 2. Use that metadata to revoke a whole range of versions at once
- 3. "Grub 2.x had a vulnerability, deny all of them, no matter which vendor comes from"
- 1 Technique used in the Shim but not standarized in UEFI

 $oldsymbol{\bot}$

Experiment

Quick Statistics

Quick Statistics

Quick Statistics

(h) Who has Secure Boot?

- We are going to steal LUKS keys from systems without secure boot (academically!)
- ♠ Before, let's recap how Linux boots
- 0. GRUB2 loads Linux image and a initramfs file
- 1. Linux Kernel gets the control (without a filesystem):

2. Linux has a (fake) / filesystem from initramfs

- We are going to steal LUKS keys from systems without secure boot (academically!)
- ♠ Before, let's recap how Linux boots
- O. GRUB2 loads Linux image and a initramfs file
- 1. Linux Kernel gets the control (without a filesystem)

2. Linux has a (fake) / filesystem from initramfs

- We are going to steal LUKS keys from systems without secure boot (academically!)
- ♠ Before, let's recap how Linux boots
- O. GRUB2 loads Linux image and a initramfs file
- 1. Linux Kernel gets the control (without a filesystem)

2. Linux has a (fake) / filesystem from initramfs

- We are going to steal LUKS keys from systems without secure boot (academically!)
- ♠ Before, let's recap how Linux boots
- O. GRUB2 loads Linux image and a initramfs file
- 1. Linux Kernel gets the control (without a filesystem):

2. Linux has a (fake) / filesystem from initramfs

- We are going to steal LUKS keys from systems without secure boot (academically!)
- A Before, let's recap how Linux boots
- O. GRUB2 loads Linux image and a initramfs file
- 1. Linux Kernel gets the control (without a filesystem):

2. Linux has a (fake) / filesystem from initramfs

- We are going to steal LUKS keys from systems without secure boot (academically!)
- ♠ Before, let's recap how Linux boots
- O. GRUB2 loads Linux image and a initramfs file
- 1. Linux Kernel gets the control (without a filesystem):

2. Linux has a (fake) / filesystem from initramfs

- We are going to steal LUKS keys from systems without secure boot (academically!)
- ∆ Before, let's recap how Linux boots
- O. GRUB2 loads Linux image and a initramfs file
- 1. Linux Kernel gets the control (without a filesystem):

2. Linux has a (fake) / filesystem from initramfs

Why are we talking about initramfs?

>_ Let's move to the terminal

Why are we talking about initramfs?

>_ Let's move to the terminal

Conclusion

- What's the current state of Secure Boot?
- People don't usually know about this mechanism
- Not widely used in Linux
 - Early days of Secure Boot, Linux wikis adviced to disable it
 - Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- In the future, we might see greater default desktop support for it

- What's the current state of Secure Boot?
- People don't usually know about this mechanism
- A Not widely used in Linux
 - Early days of Secure Boot, Linux wikis adviced to disable it
 - Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- In the future, we might see greater default desktop support for it

- What's the current state of Secure Boot?
- People don't usually know about this mechanism
- A Not widely used in Linux
 - Early days of Secure Boot, Linux wikis adviced to disable it
 - Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- In the future, we might see greater default desktop support for it

- What's the current state of Secure Boot?
- People don't usually know about this mechanism
- A Not widely used in Linux
 - Early days of Secure Boot, Linux wikis adviced to disable it
 - Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- In the future, we might see greater default desktop support for it

- What's the current state of Secure Boot?
- People don't usually know about this mechanism
- A Not widely used in Linux
 - © Early days of Secure Boot, Linux wikis adviced to disable it
 - Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- In the future, we might see greater default desktop support for it

- What's the current state of Secure Boot?
- People don't usually know about this mechanism
- A Not widely used in Linux
 - © Early days of Secure Boot, Linux wikis adviced to disable it
 - Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- In the future, we might see greater default desktop support for it

- What's the current state of Secure Boot?
- People don't usually know about this mechanism
- A Not widely used in Linux
 - © Early days of Secure Boot, Linux wikis adviced to disable it
 - ₹ Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- arphi In the future, we might see greater default desktop support for it

- **②** What's the current state of Secure Boot?
- People don't usually know about this mechanism
- Not widely used in Linux
 - © Early days of Secure Boot, Linux wikis adviced to disable it
 - Now maybe used if the distro installs it automatically
- Similar mechanisms widely used in Android and iOS
- In the future, we might see greater default desktop support for it

- ✓ //TODO

 □ Disable CSM (Compatibility)
 - ☐ Disable CSM (Compatibility Support Module) in UEF
 - ☐ Enable Secure Boot
 - Configure Secure Boot in Linux (or just reinstall a major distro that supports it
 - ☐ Preferably encrypt with LUKS

✓ //TODO

- ☐ Disable CSM (Compatibility Support Module) in UEFI
- □ Enable Secure Boot
- \square Configure Secure Boot in Linux (or just reinstall a major distro that supports it
- ☐ Preferably encrypt with LUKS

- ✓ //TODO
 - ☐ Disable CSM (Compatibility Support Module) in UEFI
 - ☐ Enable Secure Boot
 - \square Configure Secure Boot in Linux (or just reinstall a major distro that supports it
 - ☐ Preferably encrypt with LUKS

- ✓ //TODO
 - ☐ Disable CSM (Compatibility Support Module) in UEFI
 - ☐ Enable Secure Boot
 - \square Configure Secure Boot in Linux (or just reinstall a major distro that supports it
 - ☐ Preferably encrypt with LUKS

- ✓ //TODO
 - ☐ Disable CSM (Compatibility Support Module) in UEFI
 - ☐ Enable Secure Boot
 - ☐ Configure Secure Boot in Linux (or just reinstall a major distro that supports it)
 - ☐ Preferably encrypt with LUKS

- ✓ //TODO
 - ☐ Disable CSM (Compatibility Support Module) in UEFI
 - ☐ Enable Secure Boot
 - ☐ Configure Secure Boot in Linux (or just reinstall a major distro that supports it)
 - ☐ Preferably encrypt with LUKS

Questions?

Secure Boot

Analysis of Secure Boot and the Trusted Boot Chain

- Ernesto Martínez García me@ecomaikgolf.com ecomaikgolf#3519
- **m** Graz University of Technology
- Secure Application Design VO SS23
- 23rd of June 2023

♣ SLIDES & REPORT

