
D
ra
ft

 SLIDES & REPORT

ls.ecomaikgolf.com/slides/randomnumbers/

Pseudo Random Number Generation
Three Cases Where PRNGs Broke The System
 DEV v1.3-RC1

1 Ernesto Martínez García
me@ecomaikgolf.com

2 Simon Lammer
simon.lammer@student.tugraz.at

 Graz University of Technology

 Cryptanalysis VO SS23

 22nd of June 2023

D
ra
ft

Motivation

 Why Random Number Generation

• Importance might be forgotten, we usually depend on them.
• We try to break the mode or the primitive, but not the RNG.
• Bad RNGs can take down cryptosystems.

◎ Objectives

• We wanted to show real world cases where RNGs broke the system
• For each case, explain the inner workings of the RNG and how they failed
• Plus a very special RNG ⌣

2/29

D
ra
ft

Motivation

 Why Random Number Generation

• Importance might be forgotten, we usually depend on them.
• We try to break the mode or the primitive, but not the RNG.
• Bad RNGs can take down cryptosystems.

◎ Objectives

• We wanted to show real world cases where RNGs broke the system
• For each case, explain the inner workings of the RNG and how they failed
• Plus a very special RNG ⌣

2/29

D
ra
ft

Motivation

 Why Random Number Generation

• Importance might be forgotten, we usually depend on them.
• We try to break the mode or the primitive, but not the RNG.
• Bad RNGs can take down cryptosystems.

◎ Objectives

• We wanted to show real world cases where RNGs broke the system
• For each case, explain the inner workings of the RNG and how they failed
• Plus a very special RNG ⌣

2/29

D
ra
ft

Table of Contents

 Playstation 3 Nonce Misuse

 Naivest Case of bad RNG

 Ended up in a PS3 Jailbreak

 A Novel Related Nonce Attack for ECDSA

 Very Recent Attack

 9.400.000 Dollars Affected

 Dual Elliptic Curve Deterministic Random Bit Generator

 Standarized by NIST, ANSI, ISO for 7+ Years

 A Very Special Generator....

3/29

D
ra
ft

Table of Contents

 Playstation 3 Nonce Misuse

 Naivest Case of bad RNG

 Ended up in a PS3 Jailbreak

 A Novel Related Nonce Attack for ECDSA

 Very Recent Attack

 9.400.000 Dollars Affected

 Dual Elliptic Curve Deterministic Random Bit Generator

 Standarized by NIST, ANSI, ISO for 7+ Years

 A Very Special Generator....

3/29

D
ra
ft

Table of Contents

 Playstation 3 Nonce Misuse

 Naivest Case of bad RNG

 Ended up in a PS3 Jailbreak

 A Novel Related Nonce Attack for ECDSA

 Very Recent Attack

 9.400.000 Dollars Affected

 Dual Elliptic Curve Deterministic Random Bit Generator

 Standarized by NIST, ANSI, ISO for 7+ Years

 A Very Special Generator....

3/29

D
ra
ft

Table of Contents

 Playstation 3 Nonce Misuse

 Naivest Case of bad RNG

 Ended up in a PS3 Jailbreak

 A Novel Related Nonce Attack for ECDSA

 Very Recent Attack

 9.400.000 Dollars Affected

 Dual Elliptic Curve Deterministic Random Bit Generator

 Standarized by NIST, ANSI, ISO for 7+ Years

 A Very Special Generator....

3/29

D
ra
ft

Elliptic Curve Essentials

 Which direction of computation is easy? (for known G)

k×G⇌ P

k ∈ N, G,P ∈ EC

4/29

D
ra
ft

Elliptic Curve Essentials

 Which direction of computation is easy? (for known G)

k×G
easy
⇌
hard

P

k ∈ N, G,P ∈ EC

4/29

D
ra
ft

Playstation 3
Nonce Misuse

D
ra
ft

Introduction

 Sony used Elliptic Curve Digital Signatures for signed PS3 software updates.

 ECDSA Recap

An ECDSA signature (r, s) can be created from a messagem and a private key d

 We agree on:

• A Elliptic Curve EC
• A basis point G on EC

• Order n of G
• A hash function h

 Algorithm:

k $← [1, n− 1] Randomly choose from uniform distribution.
R = kG = (xR, yR)
r = xR mod n If r = 0 restart the algorithm.
e = h(m)

s = k−1(e+ d× r) mod n If s = 0 restart the algorithm.
6/29

D
ra
ft

Introduction

 Sony used Elliptic Curve Digital Signatures for signed PS3 software updates.

 ECDSA Recap

An ECDSA signature (r, s) can be created from a messagem and a private key d

 We agree on:

• A Elliptic Curve EC
• A basis point G on EC

• Order n of G
• A hash function h

 Algorithm:

k $← [1, n− 1] Randomly choose from uniform distribution.
R = kG = (xR, yR)
r = xR mod n If r = 0 restart the algorithm.
e = h(m)

s = k−1(e+ d× r) mod n If s = 0 restart the algorithm.
6/29

D
ra
ft

Importance of Randomness

s =
e+ d · r

k
mod n

 What if an attacker gets to know k?

7/29

D
ra
ft

Importance of Randomness

s =
e+ d · r

k
mod n

 What if an attacker gets to know k?

7/29

D
ra
ft

Importance of Randomness

s =
e+ d · r

k
mod n

 What if an attacker gets to know k?

 Private Key Recovery!

s =
e+ d · r

k
−→ d =

s · k− e
r

mod n

7/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness: constant value k

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness: constant value k

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness: constant value k

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness: constant value k

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness: constant value k

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ft

What Went Wrong?

⌢ Sony used the worst possible randomness: constant value k

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

8/29

D
ra
ftA Novel Related Nonce

Attack for ECDSA

D
ra
ft

Key observation

 Recall d = kisi−h(mi)
ri

mod n.

k0s0 − h0
r0

=
k1s1 − h1

r1
=⇒ k1 =

r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1
= uk0 + v

 If these nonces obey a multivariate polynomial equation

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0

 Furthermore, if ai and ei are known, the only unknown variable is d

a0

(
h0
s0

+
r0
s0
d
)e0

+ a1

(
h1
s1

+
r1
s1
d
)e1

+ a2

(
h2
s2

+
r2
s2
d
)e2

+ · · ·+ aN = 0

 The private key d appears in this polynomial’s roots.

10/29

D
ra
ft

Key observation

 Recall d = kisi−h(mi)
ri

mod n.

k0s0 − h0
r0

=
k1s1 − h1

r1
=⇒ k1 =

r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1
= uk0 + v

 If these nonces obey a multivariate polynomial equation

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0

 Furthermore, if ai and ei are known, the only unknown variable is d

a0

(
h0
s0

+
r0
s0
d
)e0

+ a1

(
h1
s1

+
r1
s1
d
)e1

+ a2

(
h2
s2

+
r2
s2
d
)e2

+ · · ·+ aN = 0

 The private key d appears in this polynomial’s roots.

10/29

D
ra
ft

Key observation

 Recall d = kisi−h(mi)
ri

mod n.

k0s0 − h0
r0

=
k1s1 − h1

r1
=⇒ k1 =

r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1
= uk0 + v

 If these nonces obey a multivariate polynomial equation

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0

 Furthermore, if ai and ei are known, the only unknown variable is d

a0

(
h0
s0

+
r0
s0
d
)e0

+ a1

(
h1
s1

+
r1
s1
d
)e1

+ a2

(
h2
s2

+
r2
s2
d
)e2

+ · · ·+ aN = 0

 The private key d appears in this polynomial’s roots.

10/29

D
ra
ft

Key observation

 Recall d = kisi−h(mi)
ri

mod n.

k0s0 − h0
r0

=
k1s1 − h1

r1
=⇒ k1 =

r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1
= uk0 + v

 If these nonces obey a multivariate polynomial equation

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0

 Furthermore, if ai and ei are known, the only unknown variable is d

a0

(
h0
s0

+
r0
s0
d
)e0

+ a1

(
h1
s1

+
r1
s1
d
)e1

+ a2

(
h2
s2

+
r2
s2
d
)e2

+ · · ·+ aN = 0

 The private key d appears in this polynomial’s roots.

10/29

D
ra
ft

Key observation

 Recall d = kisi−h(mi)
ri

mod n.

k0s0 − h0
r0

=
k1s1 − h1

r1
=⇒ k1 =

r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1
= uk0 + v

 If these nonces obey a multivariate polynomial equation

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0

 Furthermore, if ai and ei are known, the only unknown variable is d

a0

(
h0
s0

+
r0
s0
d
)e0

+ a1

(
h1
s1

+
r1
s1
d
)e1

+ a2

(
h2
s2

+
r2
s2
d
)e2

+ · · ·+ aN = 0

 The private key d appears in this polynomial’s roots.

10/29

D
ra
ft

Recurrence relation PRNGs

 Attack works if PRNG used to generate nonces:
✓ Uses arbitrary-degree recurrence relations modulo n Only k0 is truly random

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0

...

kN−1 = aN−3k
N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

☼ Goal

Produce a polynomial which only depends on the nonces, and not on unknown coefficients ai

11/29

D
ra
ft

Recurrence relation PRNGs

 Attack works if PRNG used to generate nonces:
✓ Uses arbitrary-degree recurrence relations modulo n Only k0 is truly random

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0

...

kN−1 = aN−3k
N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

☼ Goal

Produce a polynomial which only depends on the nonces, and not on unknown coefficients ai

11/29

D
ra
ft

Recurrence relation PRNGs

 Attack works if PRNG used to generate nonces:
✓ Uses arbitrary-degree recurrence relations modulo n Only k0 is truly random

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0

...

kN−1 = aN−3k
N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

☼ Goal

Produce a polynomial which only depends on the nonces, and not on unknown coefficients ai

11/29

D
ra
ft

Recurrence relation PRNGs

 Attack works if PRNG used to generate nonces:
✓ Uses arbitrary-degree recurrence relations modulo n Only k0 is truly random

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0

...

kN−1 = aN−3k
N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

☼ Goal

Produce a polynomial which only depends on the nonces, and not on unknown coefficients ai

11/29

D
ra
ft

Recurrence relation PRNGs

 Attack works if PRNG used to generate nonces:
✓ Uses arbitrary-degree recurrence relations modulo n Only k0 is truly random

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0

...

kN−1 = aN−3k
N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

☼ Goal

Produce a polynomial which only depends on the nonces, and not on unknown coefficients ai

11/29

D
ra
ft

Example with Linear Congruential Generator PRNG

k0
$← [1, n− 1]

k1 = a1k0 + a0

k2 = a1k1 + a0

k3 = a1k2 + a0

k1 − k2 = a1(k0 − k1)

a1 =
k1 − k2
k0 − k1

k2 − k3 = a1(k1 − k2)

a1 =
k2 − k3
k1 − k2

(k1 − k2)2 − (k2 − k3)(k0 − k1) = 0 ⇐= k1 − k2
k0 − k1

=
k2 − k3
k1 − k2

12/29

D
ra
ft

Example with Linear Congruential Generator PRNG

k0
$← [1, n− 1]

k1 = a1k0 + a0

k2 = a1k1 + a0

k3 = a1k2 + a0

k1 − k2 = a1(k0 − k1)

a1 =
k1 − k2
k0 − k1

k2 − k3 = a1(k1 − k2)

a1 =
k2 − k3
k1 − k2

(k1 − k2)2 − (k2 − k3)(k0 − k1) = 0 ⇐= k1 − k2
k0 − k1

=
k2 − k3
k1 − k2

12/29

D
ra
ft

Example with Linear Congruential Generator PRNG

k0
$← [1, n− 1]

k1 = a1k0 + a0

k2 = a1k1 + a0

k3 = a1k2 + a0

k1 − k2 = a1(k0 − k1)

a1 =
k1 − k2
k0 − k1

k2 − k3 = a1(k1 − k2)

a1 =
k2 − k3
k1 − k2

(k1 − k2)2 − (k2 − k3)(k0 − k1) = 0 ⇐= k1 − k2
k0 − k1

=
k2 − k3
k1 − k2

12/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.

13/29

D
ra
ft

Dual Elliptic Curve
Deterministic Random

Bit Generator

D
ra
ft

Introduction

 DUAL_EC_DRBG was a cryptographically secure deterministic random bit generator

 History

• Developed by the NSA along others such as HASH_DRBG

• Originally standarized by ANSI, NIST and ISO followed
• Available in NIST’s SP 800-90A (10.6028/NIST.SP.800-90Ar1)

• Deprecated from SP 800-90A in 2014 (from 2006)

 Characteristics

• Makes use of Elliptic Curve Cryptography (Cryptography VO L8)
• Uses two Elliptic Curve points, that’s where the “Double” come from
• Security is based on the Discrete Log EC Problem (P · k = Q)

15/29

D
ra
ft

Introduction

 DUAL_EC_DRBG was a cryptographically secure deterministic random bit generator

 History

• Developed by the NSA along others such as HASH_DRBG

• Originally standarized by ANSI, NIST and ISO followed
• Available in NIST’s SP 800-90A (10.6028/NIST.SP.800-90Ar1)

• Deprecated from SP 800-90A in 2014 (from 2006)

 Characteristics

• Makes use of Elliptic Curve Cryptography (Cryptography VO L8)
• Uses two Elliptic Curve points, that’s where the “Double” come from
• Security is based on the Discrete Log EC Problem (P · k = Q)

15/29

D
ra
ft

Introduction

 DUAL_EC_DRBG was a cryptographically secure deterministic random bit generator

 History

• Developed by the NSA along others such as HASH_DRBG

• Originally standarized by ANSI, NIST and ISO followed
• Available in NIST’s SP 800-90A (10.6028/NIST.SP.800-90Ar1)

• Deprecated from SP 800-90A in 2014 (from 2006)

 Characteristics

• Makes use of Elliptic Curve Cryptography (Cryptography VO L8)
• Uses two Elliptic Curve points, that’s where the “Double” come from
• Security is based on the Discrete Log EC Problem (P · k = Q)

15/29

D
ra
ft

Algorithm I

 Parameters

• E: y2 = x3 - 3x + 0x5a...4b mod 11...51

• n: 1157...4369

• P ∈ E: (0x6b...96, 0x4f...f5)

• Q ∈ E: (0xc9...92, 0xb2...46)

 Operations

• Seed: S0

• f(): Si · P (+ more)

• g(): Si · Q (+ more)

• Out: ri

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

16/29

D
ra
ft

Algorithm I

 Parameters

• E: y2 = x3 - 3x + 0x5a...4b mod 11...51

• n: 1157...4369

• P ∈ E: (0x6b...96, 0x4f...f5)

• Q ∈ E: (0xc9...92, 0xb2...46)

 Operations

• Seed: S0

• f(): Si · P (+ more)

• g(): Si · Q (+ more)

• Out: ri

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

16/29

D
ra
ft

Algorithm I

 Parameters

• E: y2 = x3 - 3x + 0x5a...4b mod 11...51

• n: 1157...4369

• P ∈ E: (0x6b...96, 0x4f...f5)

• Q ∈ E: (0xc9...92, 0xb2...46)

 Operations

• Seed: S0

• f(): Si · P (+ more)

• g(): Si · Q (+ more)

• Out: ri

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

16/29

D
ra
ft

Algorithm I

 Parameters

• E: y2 = x3 - 3x + 0x5a...4b mod 11...51

• n: 1157...4369

• P ∈ E: (0x6b...96, 0x4f...f5)

• Q ∈ E: (0xc9...92, 0xb2...46)

 Operations

• Seed: S0

• f(): Si · P (+ more)

• g(): Si · Q (+ more)

• Out: ri

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

16/29

D
ra
ft

Algorithm II

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

 Inner state is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and obtain (si)

 Seed recovery is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and move backwards obtaining (si - 1)

 Having (Si) means being able to compute (Sj > i)
• Recovering the inner state is disasterous. An attacker can predict bits with 100% accuracy

17/29

D
ra
ft

Algorithm II

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

 Inner state is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and obtain (si)

 Seed recovery is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and move backwards obtaining (si - 1)

 Having (Si) means being able to compute (Sj > i)
• Recovering the inner state is disasterous. An attacker can predict bits with 100% accuracy

17/29

D
ra
ft

Algorithm II

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

 Inner state is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and obtain (si)

 Seed recovery is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and move backwards obtaining (si - 1)

 Having (Si) means being able to compute (Sj > i)
• Recovering the inner state is disasterous. An attacker can predict bits with 100% accuracy

17/29

D
ra
ft

Algorithm II

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

 Inner state is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and obtain (si)

 Seed recovery is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and move backwards obtaining (si - 1)

 Having (Si) means being able to compute (Sj > i)
• Recovering the inner state is disasterous. An attacker can predict bits with 100% accuracy

17/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Algorithm III

 How the Algorithm Really Works:

input hash(input)

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness

18/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick I

 Bob, scared of Eve studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Magic Trick II

 What did just happen?

Eve created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But... this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!

20/29

D
ra
ft

Tinfoil Hat I

 NSA got asked about it in a meeting. NSA’s response:

“NSA generated (P,Q) in a secure, classified way.”

21/29

D
ra
ft

Tinfoil Hat I

 NSA got asked about it in a meeting. NSA’s response:

“NSA generated (P,Q) in a secure, classified way.”

21/29

D
ra
ft

Tinfoil Hat II

 Community had the idea of randomly generating Q. NIST member response:

“Q [...] could also be generated [...], but NSA kiboshed this idea, and I was
not allowed to publicly discuss it, just in case you may think of going there”

22/29

D
ra
ft

Tinfoil Hat II

 Community had the idea of randomly generating Q. NIST member response:

“Q [...] could also be generated [...], but NSA kiboshed this idea, and I was
not allowed to publicly discuss it, just in case you may think of going there”

22/29

D
ra
ft

Tinfoil Hat III

 Why this was the default in RSA BSAFE crypto library? Reuters :

“... RSA received 10.000.000 dollars in a deal that set the NSA formula as
the preferred, or default, method for number generation in the BSafe
software, according to two sources familiar with the contract ... [10M]

represented more than a third of the revenue that the relevant division at
RSA had taken during the entire previous year...”

23/29

D
ra
ft

Tinfoil Hat III

 Why this was the default in RSA BSAFE crypto library? Reuters :

“... RSA received 10.000.000 dollars in a deal that set the NSA formula as
the preferred, or default, method for number generation in the BSafe
software, according to two sources familiar with the contract ... [10M]

represented more than a third of the revenue that the relevant division at
RSA had taken during the entire previous year...”

23/29

D
ra
ft

Tinfoil Hat IV

 2013: Edward Snowden’s NSA leaks are published.

NSA Bullrun program existence is revealed. Program’s goal was to:

“...covertly introduce weaknesses into the encryption standards...”

 Afterwards, NSA recommended stop using DUAL_EC_DRBG. Rest follow the advice.

24/29

D
ra
ft

Tinfoil Hat IV

 2013: Edward Snowden’s NSA leaks are published.

NSA Bullrun program existence is revealed. Program’s goal was to:

“...covertly introduce weaknesses into the encryption standards...”

 Afterwards, NSA recommended stop using DUAL_EC_DRBG. Rest follow the advice.

24/29

D
ra
ft

Tinfoil Hat IV

 2013: Edward Snowden’s NSA leaks are published.

NSA Bullrun program existence is revealed. Program’s goal was to:

“...covertly introduce weaknesses into the encryption standards...”

 Afterwards, NSA recommended stop using DUAL_EC_DRBG. Rest follow the advice.

24/29

D
ra
ft

Tinfoil Hat IV

 2013: Edward Snowden’s NSA leaks are published.

NSA Bullrun program existence is revealed. Program’s goal was to:

“...covertly introduce weaknesses into the encryption standards...”

 Afterwards, NSA recommended stop using DUAL_EC_DRBG. Rest follow the advice.

24/29

D
ra
ft

Tinfoil Hat IV

 2013: Edward Snowden’s NSA leaks are published.

NSA Bullrun program existence is revealed. Program’s goal was to:

“...covertly introduce weaknesses into the encryption standards...”

 Afterwards, NSA recommended stop using DUAL_EC_DRBG. Rest follow the advice.

24/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic

25/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own

26/29

D
ra
ft

Consequences: The Hash of Shame

27/29

D
ra
ft

Consequences: The Hash of Shame

27/29

D
ra
ftQuestion Time

⌣

D
ra
ft

 SLIDES & REPORT

ls.ecomaikgolf.com/slides/randomnumbers/

Pseudo Random Number Generation
Three Cases Where PRNGs Broke The System
 PROD v1.3

1 Ernesto Martínez García
me@ecomaikgolf.com

2 Simon Lammer
simon.lammer@student.tugraz.at

 Graz University of Technology

 Cryptanalysis VO SS23

 22nd of June 2023

