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Motivation

 Why Random Number Generation

• Importance might be forgotten, we usually depend on them.
• We try to break the mode or the primitive, but not the RNG.
• Bad RNGs can take down cryptosystems.

◎ Objectives

• We wanted to show real world cases where RNGs broke the system
• For each case, explain the inner workings of the RNG and how they failed
• Plus a very special RNG ⌣
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 Which direction of computation is easy? (for known G)

k×G⇌ P

k ∈ N, G,P ∈ EC
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 Which direction of computation is easy? (for known G)

k×G
easy
⇌
hard

P

k ∈ N, G,P ∈ EC
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Introduction

 Sony used Elliptic Curve Digital Signatures  for signed PS3  software updates.

 ECDSA Recap

An ECDSA signature (r, s) can be created from a messagem  and a private key d 

 We agree on:

• A Elliptic Curve EC
• A basis point G on EC

• Order n of G
• A hash function h

 Algorithm:

k $← [1, n− 1] Randomly choose from uniform distribution.
R = kG = (xR, yR)
r = xR mod n If r = 0 restart the algorithm.
e = h(m)

s = k−1(e+ d× r) mod n If s = 0 restart the algorithm.
6/29
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e+ d · r

k
mod n

 What if an attacker gets to know k?
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Importance of Randomness

s =
e+ d · r

k
mod n

 What if an attacker gets to know k?

 Private Key  Recovery!

s =
e+ d · r

k
−→ d =

s · k− e
r

mod n
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What Went Wrong?

⌢ Sony used the worst possible randomness

Source: xkcd 221

 Discovered by group failOverflow (Dec. 2010)

 Signing keys got leaked by user geohot
C5B2 BFA1 A413 DD16 F26D 31C0 F2ED 4720 DCFB 0670

 Jailbreaks for the PS3 were possible

 Couldn’t be fixed for currently sold PS3

 Key Recovery

s1 · k− e1
r1

= d =
s2 · k− e2

r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n
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What Went Wrong?

⌢ Sony used the worst possible randomness: constant value k
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Key observation

 Recall d = kisi−h(mi)
ri

mod n.

k0s0 − h0
r0

=
k1s1 − h1

r1
=⇒ k1 =

r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1
= uk0 + v

 If these nonces obey a multivariate polynomial equation

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0

 Furthermore, if ai and ei are known, the only unknown variable is d

a0

(
h0
s0

+
r0
s0
d
)e0

+ a1

(
h1
s1

+
r1
s1
d
)e1

+ a2

(
h2
s2

+
r2
s2
d
)e2

+ · · ·+ aN = 0

 The private key d  appears in this polynomial’s roots.

10/29
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Recurrence relation PRNGs

 Attack works if PRNG used to generate nonces:
✓ Uses arbitrary-degree recurrence relations modulo n  Only k0 is truly random

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0

...

kN−1 = aN−3k
N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

☼ Goal

Produce a polynomial which only depends on the nonces, and not on unknown coefficients ai

11/29
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Example with Linear Congruential Generator PRNG

k0
$← [1, n− 1]

k1 = a1k0 + a0

k2 = a1k1 + a0

k3 = a1k2 + a0

k1 − k2 = a1(k0 − k1)

a1 =
k1 − k2
k0 − k1

k2 − k3 = a1(k1 − k2)

a1 =
k2 − k3
k1 − k2

(k1 − k2)2 − (k2 − k3)(k0 − k1) = 0 ⇐= k1 − k2
k0 − k1

=
k2 − k3
k1 − k2

12/29
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Impact

 Private keys from vulnerable signature sets can be found quickly.

 Under 1s for a small number of related nonces N
 ∼ 6.5 s for N = 16, which yields a 92-degree polynomial

 The Bitcoin blockchain was tested (for N=5)

 424 million unique public keys

 9.1 million unique public keys with at least 5 signatures 

 762 unique bitcoin wallets broken!

 All of them reused nonces and had zero balance. ⌢

 Before they were exploited, these wallets contained about 144 BTC (∼ 9.4M USD)

 Ethereum blockchain was also tested

 No practical success

 Many unexplored applications remain, since ECDSA is widely used.
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Introduction

 DUAL_EC_DRBG was a cryptographically secure deterministic random bit generator

 History

• Developed by the NSA  along others such as HASH_DRBG

• Originally standarized by ANSI, NIST  and ISO followed
• Available in NIST’s SP 800-90A  (10.6028/NIST.SP.800-90Ar1)

• Deprecated from SP 800-90A in 2014 (from 2006)

 Characteristics

• Makes use of Elliptic Curve Cryptography  (Cryptography VO L8)
• Uses two Elliptic Curve points, that’s where the “Double” come from
• Security is based  on the Discrete Log EC Problem (P · k = Q)
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Algorithm I

 Parameters

• E: y2 = x3 - 3x + 0x5a...4b mod 11...51

• n: 1157...4369

• P ∈ E: (0x6b...96, 0x4f...f5)

• Q ∈ E: (0xc9...92, 0xb2...46)

 Operations

• Seed: S0

• f(): Si · P (+ more)

• g(): Si · Q (+ more)

• Out: ri

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)
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Algorithm II

 Keeps an inner state (red) and an outer state (green)

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

 Inner state is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and obtain (si)

 Seed recovery is protected by ECDLP
• We cannot, from a (Q = kP) point, recover (P) and move backwards obtaining (si - 1)

 Having (Si) means being able to compute (Sj > i)
• Recovering the inner state is disasterous. An attacker can predict bits with 100% accuracy
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Algorithm III

 How the Algorithm Really Works:

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s · Q))

rn+1

 Notation:
• LSB240(...): Output the 240 least significant bits
• x(...): Output the x coordinate of a EC point
• input: Optional additional randomness
• ri: 240 bit random output
• si: 256 bit inner state
• seed: Initial source of randomness
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Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick I

 Bob, scared of Eve  studied the algorithm and found some interesting properties

1. With a single (ri) all possible 216 curve points (X,Y) = R = sQ can be bruteforced

⌢ But knowing the outer point R = sQ = (X,Y) point is not useful
We might now know R = sQ, but we are interested on the s to calculate next states:

s = LSB240(x(s · P))

And that means breaking ECDLP (R = sQ)

 But Bob came with an amazing (and scary) idea.
What if Eve  knows a secret relation e between P and Q?

P = e · Q
2. Eve calculates all possible R = (X,Y) from a ri. As (R = s · Q) she multiplies it by e !

e · R = e · s · Q
e · R = s · e · Q
e · R = s · P

19/29



D
ra
ft

Magic Trick II

 What did just happen?

Eve  created backdoored public parameters (P,Q). She fixed P and generated a scalar d:

d · P = Q

Then found an e such that e · d = 1 mod r:

e · d · P = e · Q
P = e · Q

With just 240 bits of random output, she can predict all the following bits.

But...  this was standarized in NIST for 7 years, and used by default in crypto libraries.

 WHERE DO THE NIST PARAMETERS CAME FROM?!?!


20/29
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Tinfoil Hat I

 NSA got asked about it in a meeting. NSA’s response:

“NSA generated (P,Q) in a secure, classified way.”
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Tinfoil Hat II

 Community had the idea of randomly generating Q. NIST member response:

“Q [...] could also be generated [...], but NSA kiboshed this idea, and I was
not allowed to publicly discuss it, just in case you may think of going there”
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Tinfoil Hat III

 Why this was the default in RSA BSAFE crypto library? Reuters  :

“... RSA received 10.000.000 dollars in a deal that set the NSA formula as
the preferred, or default, method for number generation in the BSafe
software, according to two sources familiar with the contract ... [10M]

represented more than a third of the revenue that the relevant division at
RSA had taken during the entire previous year...”
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Tinfoil Hat IV

 2013: Edward Snowden’s NSA leaks are published.

NSA Bullrun program existence is revealed. Program’s goal was to:

“...covertly introduce weaknesses into the encryption standards...”

 Afterwards, NSA recommended stop using DUAL_EC_DRBG. Rest follow the advice.
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Backdoor Proof

 Now let’s mathematically prove the existence of the backdoor, so we can sue NSA 

 We have to prove that there is a relation between NIST’s P and Q

1. By having P and Q we have to find one of the following numbers:

P · d = Q P = e · Q

 But wait... that sounds familiar. Isn’t this the ECDLP?

 To prove the existence of a backdoor we would have to break ECDLP.

 They used cryptography to hide them using cryptography to break cryptography supposedly

Ironic
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Extra Notes

 To conclude let’s add a few notes to the history

 NIST knew about the possible backdoor.
• Argued that “there was no evidence of those numbers existing”

 DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
• Thousands of times slower than alternatives
• Output bias, guessing with sucess rate of 0.50078. Unacceptable in all other cases.

 NIST added the possibility to generate your own parameters
• In the Appendix, and you wouldn’t get FIPS validation.
• Nobody generated their own values.

 NSA said that they wanted it in the standard so they could use it
• Believed nobody would use it because “it’s ugly and slow”
• Shared their (P,Q) in case anybody wanted to use them, but people could generate their own
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