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© Why Random Number Generation

¢ Importance might be forgotten, we usually depend on them.
e We try to break the mode or the primitive, but not the RNG.
¢ Bad RNGs can take down cryptosystems.

Objectives

¢ We wanted to show real world cases where RNGs broke the system
e For each case, explain the inner workings of the RNG and how they failed
¢ Plus a very special RNG ©
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@ A Very Special Generator....
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Introduction
I Sony used Elliptic Curve Digital Signatures & for signed PS3 @® software updates.

& ECDSA Recap

An ECDSA signature (r, s) can be created from a message m & and a private key d &

®, \\e agree on:

e A Elliptic Curve EC e Order nof G
¢ A basis point Gon EC ¢ A hash function h
4 Algorithm:
k& [1,n—1] Randomly choose from uniform distribution.
R = kG = (g, vr)
r=xgmod n If r= 0 restart the algorithm.
e = h(m)

s=k'(e+dxr)modn If s = 0 restart the algorithm.
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e+d-r
s= 3 mod n

©@ What if an attacker gets to know k?

O Private Key & Recovery!

e+d-r s-k—e
s= — d=

7 mod N
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int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.
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What Went Wrong?

® Sony used the worst possible randomness: constant value k

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.

Source: xked 221

%5 Discovered by group failOverflow (Dec. 2010)

@ Key Recovery

&, Signing keys got leaked by user geohot

C5B2 BFA1 A413 DD16 F26D 31C@ F2ED 4720 DCFB 0670

Sz-kfez

n - g
é1-n—6e-n
S1-p— 5N

d S1 e —6y'n
no S1-n—S-n

&1
n

mod n




What Went Wrong?

® Sony used the worst possible randomness: constant value k

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.
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What Went Wrong?

® Sony used the worst possible randomness: constant value k

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.

}
Source: xked 221
%5 Discovered by group failOverflow (Dec. 2010) @ Key Recovery
. k- k=
&, Signing keys got leaked by user geohot 51 ; 8 —g=2 - 2
C5B2 BFA1 A413 DD16 F26D 31C@ F2ED 4720 DCFB 0670 e e1:-h—6e-'n

S1-p— 5N
$S Jailbreaks for the PS3 were possible

S e1:-h—6e-n e1
= = o222 1 =

& Couldn't be fixed for currently sold PS3 U Sca=tch  #

mod n
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Key observation

M Recall d = k’s%f'(m’) mod n.

koSg — h ki1s1 —h ns hiro — hgr
050 o _ Kis 1 /<1:10/<0+10 O1:u/<0+v
o r oS 051

If these nonces obey a multivariate polynomial equation
aoke? + a1k + apks? + -+ ay =0

Furthermore, if a; and e, are known, the only unknown variable is d

h e h hy
%<:+2%0 +a(14— @ +az<2+;d> o day=0
0 0 51 2

A The private key d & appears in this polynomial’s roots.
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Recurrence relation PRNGs

@ Attack works if PRNG used to generate nonces:
@ Uses arbitrary-degree recurrence relations modulo n = Only kg is truly random

ky = a/\/,3/<6v73 + <3/\/,4/<6\F4 + -+ arko + a
ky = aN,3/<4V_3 + aN,4/<4V_4 + -+ a1k + ag

ks = 8N73/<£V_3 + 8/\/,4/(9/_4 4+ -+ arky + ag

kn_q = a/\/_3/<%:§ + aN_4k%:‘2‘ 4+ -4+ arky_o+ ag

® Goal

Produce a polynomial which only depends on the nonces, and not on unknown coefficients a;
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Example with Linear Congruential Generator PRNG

ko & [1,n—1] ki —ky = a1 (ko — k1)
k1 — Ky

ki = a1ko + ag L —

ko = a1k + ap ky — k3 = a1(k; — k2)
ky — k

ks = arky + ag a; = 2 3



Example with Linear Congruential Generator PRNG

ko & [1,n—1]
ki = a1k + ag
ko = a1k1 + ag
ks = a1k + ag

(ki — ka)? = (ky — ka) (ko — k1) = 0 <=

k1 — Ky
L —s

ko — k3 = a1 (k; — k)
ko — k3
R

ki —ky ko —k3




Impact

&, Private keys from vulnerable signature sets can be found quickly.
® Under 1s for a small number of related nonces N

@ ~ 6.5s for N= 16, which yields a 92-degree polynomial
B The Bitcoin blockchain was tested (for N=b)
[l 424 million unique public keys

= 9.1 million unigue public keys with at least 5 signatures &
s’ 762 unique bitcoin wallets broken!

ii All of them reused nonces and had zero balance. ®

$ Before they were exploited, these wallets contained about 144 BTC (~ 9.4M USD)

& Ethereum blockchain was also tested

© No practical success

O Many unexplored applications remain, since ECDSA is widely used.
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Introduction

91 puAL_EC_DRBG was a cryptographically secure deterministic random bit generator

$k History

Developed by the NSA i along others such as HASH_DRBG
Originally standarized by ANSI, NIST I and ISO followed
Available in NIST’s SP 800-90A B (10.6828/NIST. SP. 800-90Ar1)
Deprecated from SP 800-90A in 2014 (from 2006)

Characteristics

e Makes use of Elliptic Curve Cryptography & (Cryptography VO L8)
Uses two Elliptic Curve points, that's where the “Double” come from
Security is based @ on the Discrete Log EC Problem (P - k= Q)
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Algorithm I

& Parameters % Operations

® E: y2 =x3 - 3x + @x5a...4b mod 11...51 ® Seed: Sp

® n: 1157...4369 ® f(): S;-P (+ more)
® pcE: (Ox6b...96, @x4f...f5) ® g(): S;-Q (+ more)
® Q €E: (Bxc9...92, Oxb2...46) ® Qut: ry

I Keeps an inner state (red) and an outer state (green)

So f(se) S1 f(s1) S2 f(sz2) S3 f(s3)

g(sq) g(sz) g(s3)

rq ra rs




Algorithm II

I Keeps an inner state (red) and an outer state (green)

Se

S3

f (se)

S1

f(s1)

S2

f(s2)

f(s3)

g(sq)

1

g(s;)

ra

g(ss3)

rs
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Algorithm II

I Keeps an inner state (red) and an outer state (green)

Se f(sq) S f(sq) S2 f(s2) S3

f(s3)

g(sq) g(s,) g(s3)

rq ra rs

U Inner state is protected by ECDLP
e \We cannot, from a (Q = kP) point, recover (P) and obtain (s;)

U Seed recovery is protected by ECDLP

e \We cannot, froma (Q = kP) point, recover (P) and move backwards obtaining (s; - 1)

@ Having (s;) means being able to compute (S; » 1)

e Recovering the inner state is disasterous. An attacker can predict bits with 100% accuracy

17/29



Algorithm III

@ How the Algorithm Really Works:

Sn
. eed S0 | LSBaso (x(s - P)) | St
Notation:
® LSByg(...): Output the 240 least significant bits | LSBasp (x(s - Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output F o+t
® s;: 256 bit inner state
® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

Sn
L seed S0 | LSBaso (x(s - P)) | St
Notation:
® LSByg(...): Output the 240 least significant bits | LSBasp (x(s - Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output F o+t
® s;: 256 bit inner state
® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

Sn
L seed 50 | LSBaso (x(s - P)) | St
Notation:
® LSByg(...): Output the 240 least significant bits | LSBasp (x(s - Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output F o+t
® s;: 256 bit inner state
® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

Sn
—> seed > ’ LSB24p (x(s-P)) ‘ St
Notation:
® LSByg(...): Output the 240 least significant bits | LSBae (x(s - Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output F o+t
® s;: 256 bit inner state

® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

Sn
s ceed S0 | LSBase (x (s - P)) | S
Notation:
® LSByg(...): Output the 240 least significant bits | LSBasp (x(s - Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output F o+t
® s;: 256 bit inner state

® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

Sn
s ceed S0 | LSBase (x (s - P)) | S
Notation:
® LSBy(...): Output the 240 least significant bits ’ LSBo4p (x(s-Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output F o+t
® s;: 256 bit inner state

® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

Sn
s ceed S0 | LSBase (x (s - P)) | S
Notation:
® LSBy(...): Output the 240 least significant bits ’ LSBo4p (x(s-Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output et
® s;: 256 bit inner state

® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

Sn
s ceed S0 | LSBase (x (s - P)) | S
Notation:
® LSByg(...): Output the 240 least significant bits | LSBasp (x(s - Q))
® x(...): Output the x coordinate of a EC point
® input: Optional additional randomness
® r;: 240 bit random output F o+t
® s;: 256 bit inner state

® seed: Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:

———> input ——— | hash(input)

Notation:

® LSBysp(...):
® x(...):

® input:

® r;:

® s;:

® seed:

v
_ @
S L
[LSBaa x(s - P)) | —n

Output the 240 least significant bits | LSBasp (x(s - Q))
Output the x coordinate of a EC point
Optional additional randomness

240 bit random output F o+t
256 bit inner state
Initial source of randomness



Algorithm III

@ How the Algorithm Really Works:
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Notation:
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® x(...):

® input:

® r;:

® s;:
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v
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Output the 240 least significant bits | LSBasp (x(s - Q))
Output the x coordinate of a EC point
Optional additional randomness

240 bit random output F o+t
256 bit inner state
Initial source of randomness
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Eve & created backdoored public parameters (P, Q). She fixed P and generated a scalar d:

d-P=0Q
Then found an e such thate-d = 1 mod r:
e-d-P=¢e-Q
P==e-Q

With just 240 bits of random output, she can predict all the following bits.

But... <.* this was standarized in NIST for 7 years, and used by default in crypto libraries.

A WHERE DO THE NIST PARAMETERS CAME FROM?!1?!

i
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Tinfoil Hat I

®) NSA got asked about it in a meeting. NSAs response:

“NSA generated (P, Q) in a secure, classified way.”
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Tinfoil Hat II

®, Community had the idea of randomly generating Q. NIST member response:

“Q[...] could also be generated [...], but NSA kiboshed this idea, and | was
not allowed to publicly discuss it, just in case you may think of going there”
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Tinfoil Hat III
©® Why this was the default in RSA BSAFE crypto library? Reuters :

.. RSA received 10.000.000 dollars in a deal that set the NSA formula as
the preferred, or default, method for number generation in the BSafe
software, according to two sources familiar with the contract ... [10M]

represented more than a third of the revenue that the relevant division at

RSA had taken during the entire previous year..."
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Tinfoil Hat IV
8 2013: Edward Snowden's NSA leaks are published.

NSA Bullrun program existence is revealed. Program'’s goal was to:

"..covertly introduce weaknesses into the encryption standards...”

X Afterwards, NSA recommended stop using DUAL_EC_DRBG. Rest follow the advice.
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Backdoor Proof
Q Now let's mathematically prove the existence of the backdoor, so we can sue NSA i

¥ We have to prove that there is a relation between NIST's P and qQ

1. By having P and Q we have to find one of the following numbers:

v
1]

@D

o

P-d=0Q

® But wait... that sounds familiar. Isn't this the ECDLP?
@ To prove the existence of a backdoor we would have to break ECDLP

ii They used cryptography to hide them using cryptography to break cryptography «sseca,

Ironic
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Extra Notes
4 To conclude let’s add a few notes to the history

®, NIST knew about the possible backdoor.
e Argued that “there was no evidence of those numbers existing”

@ DUAL_EC_DRBG was objectively worse than other alternatives. Still got standarized.
e Thousands of times slower than alternatives

e Qutput bias, guessing with sucess rate of @.50078. Unacceptable in all other cases.

# NIST added the possibility to generate your own parameters

¢ |n the Appendix, and you wouldn't get FIPS validation.
¢ Nobody generated their own values.

® NSA said that they wanted it in the standard so they could use it
e Believed nobody would use it because “it's ugly and slow”
e Shared their (P, Q) in case anybody wanted to use them, but people could generate their own



Consequences: The Hash of Shame

mjos\dwez

]

Wow, peaple really don't trust their RNGs. The damage done by that NSA

Dual EC s**t can still be felt, almost 10 years after the fact.

| have a little bit more faith as | build those. Really not a nation-state
mystery to me how they work.

15.8K




Consequences: The Hash of Shame

Algorithm 8 KyYBER.CCAKEM.Enc(pk)

mjos\dwez

Input: Public key pk € B'2kn/8+32
If NIST keeps line 2, SHA3-256 hash of the 256-bit random number Output: Ciphertext ¢ € BduFn/8+dvn/8

generated on line 1, I'll just call it "the hash of shame." Output: Shared key K € B*
It's there because the designers of Kyber think that RNGs (or NIST RBGs) 1. m — B:iz ‘

I( - .
iaeSZ.o bad that they need post-processing like this. You know, just in
3: (K,r) = G(m|H(pk))
4: ¢ := KYBER.CPAPKE.Enc(pk, m, 1)
5. K == KDF(K|/H(c))
6: return (¢, K)
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