
An Examination of Various Random
Number Generator Weaknesses

Ernesto Mart́ınez Simon Lammer

Cryptanalysis ST 2023

Abstract

This report aims to showcase the importance of Random Number Generators
(RNGs) in the cryptographic stack by showing a set of three real world examples where
the cryptosystems could be broken due to weak RNGs. First scenario shown is the
naive “Sony’s PS3 ECDSA” misunderstanding of random number generation and how
it leaked it’s PS3 ECDSA key. Secondly the case “A Novel Related Nonce Attack for
ECDSA” is shown and demonstrates how the kind of random number generator used
matters and could break ECDSA signatures in real world implementations such as the
Bitcoin network. Finally the infamous “Dual Elliptic Curve Deterministic Random
Bit Generator” or DUAL EC DRBG is explained cryptographically and historically,
alongside it’s non-provable backdoor which could in practise break most of the
cryptosystems where this RNG was used.

Keywords: RNG · PRNG · ECDSA · DUAL EC DRBG

1 Introduction

Random Number Generators are nowadays commonly found in cryptosystems, from key
generation to signatures and encryption. It’s a widely researched topic in cryptography
and involves multiple interesting aspects such as entropy sources and how to safely use
the generated randomness.

Due to their necessity for modern cryptography, our motivation was to research and
study real world situations where RNGs caused a major breakage in the cryptosystems
they were used for. Our main goal was to select such situations and understand what
and how happened.
The main questions we aimed for the report were, for each topic, what was the

mathematical root cause that induced the fault in the algorithm, and how it could be
prevented. We also wanted to know, naively, the impact of the improper or weak RNG
usage had in a real world application. We contribute by providing a summary and
in-depth explanations of multiple cases of RNG-related weaknesses that happened in
practise with critical impacts.

1

Outline. In Section 2, Section 3 and Section 4 we examine the main topics of research
of the report: PS3 ECDSA Nonce, “Polynonce” and DUAL EC RBG. In each section, the
introductory content appears in order to understand the main topic before showing it’s
studied weaknesses. Finally, in Section 5 we conclude the report with a summary of our
findings and thoughts.

2 PS3 ECDSA Nonce Misuse

2.1 History [EDN11]

The Playstation 3 (PS3) was released by Sony in 2006. It’s main purpose is to serve as a
game console. Additionally it also enabled media playback. A more niche function was
to load a different operating system using the PS3’s OtherOs feature. However, in April
2010, Sony decided not only to refrain from including this feature in the PS3 Slim (which
they already announced in 2009), but also to remove it retroactively and unilaterally
from the whole PS3 lineup via an automated firmware upgrade. This sparked motivation
of some groups to find a way of restoring the ability to use operating systems different
from the default one.

In this quest, by December 2010 the hacker group ”failOverflow” found - among several
other exploits - a way to reveal the private key used for signing executables (other than
games) by Sony. Even though they chose not to publish the recovered private key, this
was done a year later by ”geohot”; which caused Sony to file a law suit that was eventually
settled without revealing its full terms (but including a permanent injunction preventing
”geohot” from reposting the original security system information) [Hen13].

2.2 Attack details [fai10; EDN11]

To learn how the attack works, it is necessary to first understand how the used signature
algorithm ECDSA works.

k
$← [1, n− 1] Randomly choose from uniform distribution.

R = kG = (xR, yR)

r = xR mod n If r = 0 restart the algorithm.

e = h(m)

s = k−1(e+ d× r) mod n If s = 0 restart the algorithm.

Figure 1: Creating an ECDSA signature (r, s) from message m, private key d, EC basis
point G, order n of G, and hash function h.

In ECDSA it is of utmost importance, that the nonce be generated randomly per-
signature in an unpredictable way from a uniform distribution over a certain interval

2

(see Figure 1) and immediately discarded afterwards. If the nonce k used in a signature
leaks, the private key d used to create said signature can be trivially recovered, because

s =
e+ d · r

k
≡ d =

s · k − e

r
mod n,

where s, e, r and n are publicly known.
So, how did failOverflow manage to reveal Sony’s private ECDSA key? Well, let’s put

it this way: If a security flaw can be summarized by a xkcd comic, any system built upon
it is not very secure.

Figure 2: xkcd 221 − Random Number

Yes, they simply used a constant value for the - supposed to be random - nonce k.
This allowed attackers to easily retrieve the private key d from two signatures:

d =
s1 · k − e1

r1

d =
s2 · k − e2

r2
s1 · k − e1

r1
=

s2 · k − e2
r2

k =
e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

d =
s1
r1
· e1 · r2 − e2 · r1
s1 · r2 − s2 · r1

− e1
r1

mod n

2.3 Impact

The chain of trust system that was supposed to only allow valid operating systems to
run on the PS3 does not support changing/revoking the root signature key (which is the
one that was leaked). Since that key has been published, everyone could sign arbitrary
software with it. Sony has not found a way to fix this issue in the PS3, but has surely
moved on to a better pseudo-random number generator for other devices.

3

3 A Novel Related Nonce Attack for ECDSA

The elliptic curve digital signature algorithm (ECDSA) is popular and often used to
create digital signatures. Among its use cases are TLS, SSL, and several blockchain
protocols including Bitcoin and Ethereum. When creating such signatures, the signer
has to choose a secret per-message nonce k (see Figure 1). Leakage of this secret nonce k
allows recovery of the private key d (as explained in Section 2.2).
There has been some work to choose k deterministically [Por13], but it is usually

chosen as a per signature (pseudo-)random value [Mac23, p.5]. If the supposedly random
choices were not unpredictably selected from a uniform distribution (i.e., because of a
flawed PRNG), the signature’s security guarantees break down (for the used private key
d).
In this novel related nonce attack for ECDSA [Mac23], Macchetti presents a way to

recover the nonces used in a small number of signatures under certain conditions.

3.1 Attack Details [Mac23]

Every signature can be written as

ki =
hi
si

+
ri
si
· d mod n.

The point Ri = kiG can be recovered from the it’s x-coordinate ri that is the first half
of the signature. However, retrieving ki from Ri is (assumed to be) hard - as hard as
solving the discrete logarithm problem over the elliptic curve. Nevertheless, a relationship
between nonces of consecutive messages can be found:

ki =
hi
si

+
ri
si
· d

d =
kisi − hi

ri

k0s0 − h0
r0

=
k1s1 − h1

r1
(k0s0 − h0)r1 = (k1 · s1 − h1)r0

k1 =

(k0·s0−h0)r1
r0

+ h1

s1

=
k0r1s0 − h0r1 + h1r0

r0s1

=
r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1

Naming these coefficients u = r1s0
r0s1

and v = h1r0−h0r1
r0s1

, the relationship between
signatures can be stated as

R1 = k1G = (uk0 + v)G = uR0 + vG.

4

Therefore, finding the nonces of N points Ri is only one instance of the DLP instead of
N instances.
If the nonces used for N signatures obey a multivariate polynomial equation, that

equation can be rewritten as a univariate polynomial dependent only on the private key
and public values. If coefficients ai and exponents ei in

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0

are known, then this can be reformulated as

a0

(
h0
s0

+
r0
s0

d

)e0

+ a1

(
h1
s1

+
r1
s1

d

)e1

+ a2

(
h2
s2

+
r2
s2

d

)e2

+ · · ·+ aN = 0.

Computers can quickly find this polynomial’s roots, wherein the private key d will appear.
The new attack works if the PRNG used to generate the nonce k uses arbitrary-degree

recurrence relations modulo the order n of the elliptic curve’s generator point G. In
that case, only the very first nonce k0 is chosen with proper randomness. For example,
a Linear Congruential generator (LCG) with multiplier a1 and increment a0, where
ki = a1 ·ki−1+a0 mod n; or a Quadratic Congruential generator (QCG) with coefficients
ai, where ki = a2 ∗ki−1+a1 ∗ki−1+a0 mod n. Note that nonce-reuse is a special case of
these relations, where all coefficients but a0 are non-zero (and a0 is equal to the repeated
nonce). In general, the nonces generated by such a PRNG relate as follows:

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0

· · ·
kN−1 = aN−3k

N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

The goal is to produce a polynomial which only depends on the nonces and not on the
(unknown) coefficients ai. Therein the nonce dependency can then be substituted with a
dependency on the private key d using the previously shown relation ki =

hi
si
+ ri

si
·d, after

which the roots of the polynomial can be found to reveal the private key d in little time.

5

Let’s show the simplest case, which uses a LCG:

k0
$← [1, n− 1]

k1 = a1k0 + a0

k2 = a1k1 + a0

k3 = a1k2 + a0

k1 − k2 = a1(k0 − k1)

a1 =
k1 − k2
k0 − k1

k2 − k3 = a1(k1 − k2)

a1 =
k2 − k3
k1 − k2

k1 − k2
k0 − k1

=
k2 − k3
k1 − k2

0 = (k1 − k2)
2 − (k2 − k3)(k0 − k1)

Similar equations can be generated for higher-order congruential generators when more
signatures were observed; e.g. N=5 signatures for a QCG yields a 4-degree polynomial, or
N=6 signatures for a Cubic Congruential Generator (CCG) yields a 7-degree polynomial.
The paper also describes how a set of N − 1 signatures with truly random nonces

can be extended with a rogue nonce to have at least one ordering of signatures that is
vulnerable to the attack described above. Alas, finding the correct ordering is no faster
than brute-force.

3.2 Impact

Using the provided implementation, private keys from vulnerable sets of signatures can
be found very quickly (within one second for low-degree generators; and about 6.5 s for
N=16, which yields a 92-degree polynomial) [Mac23]. If the nonces are truly generated
randomly, any polynomial relation between them should have a very high degree - which
would render this attack infeasible to apply in practice.

Signatures of the bitcoin blockchain were tested for this vulnerability. Creating a
workable input dataset for the attack was not trivial since the original messages signed by
the listed signatures are not included, but instead expected to be recomputed by signature
verifiers. Retrieving the original messages for all signatures from the raw blockchain took
24 hours. The blockchain contained signatures from roughly 424 million unique public
keys, yet the number of signatures per key declines rapidly as can be seen in Figure 3.
[Ami23]

Signatures that stem from public keys with at least N=5 signatures were tested (this
could exploit up to quadratic polynomial nonce relations) on a 128-core VM in under

6

Figure 3: Amount of public keys by number of signatures in the bitcoin blockchain (until
2022-09-05). [Ami23]

3 days. The estimated cost of this analysis is just under 300 USD. 762 unique bitcoin
wallets were broken in this procedure. The attack was rerun with N=4 to find another
11 weak wallets. Alas, all of these 773 wallets had a zero balance and reused nonces
(the simplest polynomial relation). About 144 BTC (9.4 million USD) were possibly
previously stolen from these wallets by exploiting their reused nonces. [Ami23]
The attack was also applied to the Ethereum blockchain and server TLS connections

without practical success. However, there are many more use cases for ECDSA that have
not been tested. The authors released their code in addition to the information, to enable
others to create more robust systems. [Ami23]

4 Dual Elliptic Curve Deterministic Random Bit Generator

Dual Elliptic Curve Deterministic RBG (Random Bit Generator) or DUAL EC DRBG was1

a cryptographically secure pseudo random number generator (CSPRNG) developed by
the NSA [Kel14, p.3] that used elliptic curves to generate a deterministic sequence of
random bits based on a seed. The algorithm got standardized by ANSI, ISO and NIST
[BLN15, p.1] during seven years2, and even got to be the default algorithm for DRBG in
the “RSA BSAFE” cryptography library from RSA Security [BLN15, p.2]. Besides it’s
apparent success, the algorithm was heavily criticised by the cryptography community
[Kel14; Gre13b; Ada14] generally due to a RNG bias, poor performance, lack of reduction
proof and the suspects of a possible NSA kleoptographic3 backdoor.

1We took the liberty of removing the secure attribute, assuming that the problems found and stated in
this report, are enough justification to discard the qualifier.

2In the specific case of NIST
3The term kleptographic backdoor was introduced by Adam Young and Moti Yung in 1996 [YY97a].
Refers to a subtle and secure method of stealing information commonly using asymmetric cryptography.

7

4.1 Background

Before starting with the contents of the section, this small subsection aims to provide a
starter mathematical background in order to be able to properly understand the rest of
the contents. If the reader is confortable with basic concepts from elliptic curves such as
it’s order, scalar multiplication, operators and the Weierstrass Form, it can freely skip
the subsection.

“Elliptic Curve Cryptography” is a subfield of cryptography (or a type of cryptosystems)
that makes use of Elliptic Curves in order to achieve a certain functionality. For example,
they are commonly use due to their discrete-log number-theoretic hard problem.
An Elliptic Curve is formed by solutions (X,Y) of an equation in Weierstrass Form

Equation 1, Equation 2 (simplified form for Q,R,C or any Fpm(p ≠ 2, 3)) and Equation 3
(simplified form for F2m).

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

y2 = x3 + ax+ b (2)

y2 + xy = x3 + ax2 + b (3)

In an elliptic curve, a point P it’s represented by it’s coordinates (X,Y). We can apply
operations to the points such as the inverse, addition, double, scalar multiplication, etc.

In cryptography we don’t use “nice” curves as the one shown in Figure 4, which are in
R. We operate over finite fields (Figure 5) which make some operations hard to compute,
as in exponentiation with modular arithmetic.

For this section, the most important concept to understand is that elliptic curves have a
number-theoretic problem similar to the discrete-log in diffie hellman with exponentiation.
If we take a scalar d and we multiply it by a point G, the resulting point P =

∑k
1 G

along G are not enough information to recover the secret d. This is called the elliptic
curve discrete log problem. We can translate discrete log problems like the diffie hellman
key generation to it’s elliptic curve version by changing the group elements to elliptic
curve points.
Other concept of an elliptic curve is it’s order. The order of an elliptic curve is the

number of points (X,Y) including O (neutral element). As points are the possible
solutions to the elliptic curve equation, it’s basically all it’s possible solutions.
For understanding DUAL EC DRBG you have to know that it involves two elliptic curve

points P and Q which belong to the same predefined elliptic curve. You can take an
overview of this parameters in Figure 6.

4.2 History & Standarization Process

Understanding DUAL EC DRBG’s history is the keystone to understand the nature and
criticism of it’s algorithm. The origins of it, along with the standarization process, are
filled with irregularities and overlookings that point to the possible NSA backdoor. As the
existence of a backdoor cannot be mathematically proven −reasons shown in Section 4.4−
history, accompanied with the critical flaws that we’ll show, are the way to suspect of
the existence of a NSA kleptographic backdoor.

8

O

Neutral element O

•P

•
−P

Inverse element −P

•P •Q •

•
P +Q

Addition P +Q
“Chord rule”

•P •

•
2P

Doubling P + P
“Tangent rule”

Figure 4: Elliptic Curve Operations. Source www.iacr.org/authors/tikz/

x ∈ R

y ∈ R

y2 = x3 − 2x+ 1 over R

y ∈ Z89

x ∈ Z89••••

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

y2 = x3 − 2x+ 1 over Z89

Figure 5: Elliptic Curves over R and Z89. Source: www.iacr.org/authors/tikz/

1997 Adam Young and Moti Young present two papers at Eurocrypt 1997 and Crypto
1997 showing how cryptography could be used as an attack resource [YY97a] instead of a
defensive one by building a Diffie Hellman kleptographic backdoor [YY97b]. Years later
it’s shown that the DUAL EC DRBG backdoor is similar to the Diffie Hellman backdoor
presented.

2000 ANSI X9.82 standarization process starts and the NSA pushes to include DUAL EC DRBG

in ANSI X9.82 standard [Gre13a]. This shows that the algorithm originated as an ANSI
standard, then NIST and ISO adopted it too [Gre13a].

early 2004 A draft of ANSI.X9.82 is published and includes DUAL EC DRBG. Also, RSA
Security makes DUAL EC DRBG the default CSPRNG in the BSAFE cryptographic library.
Ten years later, Reuter reports that this decision came from a 10 million USD deal that
NSA had with RSA Security “... RSA received $10 million in a deal that set the NSA
formula as the preferred, or default, method for number generation in the BSafe software,

9

www.iacr.org/authors/tikz/
www.iacr.org/authors/tikz/

according to two sources familiar with the contract. ... [$10 million] represented more
than a third of the revenue that the relevant division at RSA had taken during the entire
previous year ...” [Men13].

late 2004 NIST RNG Workshop starts. First question of P and Q appears: John
Kelsey asks Don Johnson (NIST) where Q came from in DUAL EC DRBG [Kel14]. NIST
response is “Q is (in essence) the public key for some random private key. It could also be
generated like a(nother) canonical G, but NSA kiboshed this idea, and I was not allowed
to publicly discuss it, just in case you may think of going there.”

early 2005 Certicom (now Blackberry) fills a patent showing a method to build a
deliberate backdoor in dual EC (and how to prevent it) by having the controll of P and
Q generation [BLN15, Chapter 8]. They explain the importance of this backdoor and
how it could be used to decrypt traffic: “in this case, trusted law enforcement agents may
need to decrypt encrypted traffic of criminals, and to do this they may want to be able to
use an escrow key to recover the encryption key”. It’s clear that the authors were aware
of the Dual EC backdoor and how to exploit it by January 2005. The patent was referred
to the Department of Defense (DoD) of the United States and the NSA (in 2007), which
recommended against a secrecy order [BV05, p.48].

late 2005 ISO/IEC 18032:2005 and NIST SP 800-90A draft are published, both include
DUAL EC DRBG. The possibility of a trapdoor by controlling (P,Q) in DUAL EC DRBG is
formally commented in X9. The NSA’s response was “NSA generated (P,Q) in a secure,
classified way.”. NSA also pointed out that DRBG was originally created for the national
security community, and that they wanted to get FIPS validated devices that used it.
They suggested that it would be reasonable to let other users to generate their own (P,Q)
[Kel14, p.24]. Years later, it’s shown that almost all the implementations used the default
NSA parameters and the usage of custom values was discouraged as you couldn’t get
FIPS4 140 certification [BK12, p.77].

early 2006 Kristian Gjøsteen publishes a comment [Gjo05] on the NIST SP 800-90A
stating that there is a bias in the random bits produced by DUAL EC DRBG that could allow
predicting bits with a certain advantage [Gjo05, p.8]. Kristian clearly states that this
sucess rate would not be acceptable in PRBG based on symmetric primitives, and neither
should be based on number-theoretic assumptions. Berry S. and Andrey S. improve
Kristian’s attack afterwards [SS06]. Daniel R. L. Brown publishes a paper with extensions
to the previous one and anticipating the findings of Shumow and Ferguson’s [SF07] that
a backdoor could possibly exist.

mid 2006 NIST SP 800-90A is published including DUAL EC DRBG without any previ-
ously stated problem fixed. Three other algorithms are presented (HASH DRBG, HMAC DRBG,

4Federal Information Processing Standards. It’s a U.S. goverment computer security standard that
specifies certain requirements for cryptography modules

10

CTR DRBG) as an alternative, one of them also from the NSA (HASH DRBG) but with NIST
modifications. Years later, after the discovery of the backdoor, it’s known that the
solutions proposed to reduce the bias problem (unfixed in the standard) would have
(partially) closed the backdoor [BLN15, p.5].

2007 Dan Shumow and Niels Ferguson give a presentation [SF07] that demonstrates
how an attacker can include a backdoor in DUAL EC DRBG and recover the full internal
state with the control of (P,Q). An article [Sch07] is published in Wired suggesting
that the NSA could have a backdoor in DUAL EC DRBG based on this presentation. NIST
rejected retiring DUAL EC DRBG stating that they had “... no evidence that anyone has,
or will ever have, the secret numbers for the backdoor ...” [BLN15; Kel14, p.8, p.32].

2013 Edward Snowden’s NSA leaks are published. NSA’s Bullrun program existence
is revealed, the program aimed “to covertly introduce weaknesses into the encryption
standards ...”. NSA Security advises it’s customers to stop using DUAL EC DRBG in BSAFE
cryptography library.

april 2014 NIST removes DUAL EC DRBG [NIS14]. Checkoway et al. shows the possiblity
of building a SSL/TLS backdoor with DUAL EC DRBG [Che+14].

may 20214 Richard George, NSA’s Technical Director of “Information Assurance
Directorate” made the following statement: “We were gonna use the Dual Elliptic Curve
randomizer. And I said, if you can put this in your standard, nobody else is gonna use
it, because it looks ugly, it’s really slow. It makes no sense for anybody to go there. But
I’ll be able to use it. And so they stuck it in, and I said by the way, you know these
parameters that we have here, as long as they’re in there so we can use them, you can let
anybody else put any parameters in that they want.” [BLN15, p.10].

4.3 How DUAL EC DRBG Works

In this section we will explain the inner workings of DUAL EC DRBG from a general
perspective. We won’t detail it’s security and full reduction proof, but we’ll study how
the states are updated and which number-theoretic problem defends the algorithm, also
we’ll study how additional input can be fed into it. In the following Section 4.4 we’ll
show the problems this algorithm has and how they work.

The general overview of the algorithm can be seen in Figure 6 and Figure 7. Figure 7
shows the separation between the inner state and the output “state”, it also shows the
order in which the operations are applied and to which operands. Figure 6 is a more
detailed diagram showing how the state feedbacks it’s own output by itself, it also details
more visually which operations are applied in each state.

11

input hash(input)

seed
s0

LSB240(x(s · P))
sn+1

⊕
sn

LSB240(x(s ·Q))

rn+1

P : (0x6b...96, 0x4f...f5)

Q : (0xc9...92, 0xb2...46)

E : y2 = x3 − 3x+ 0x5a...4b mod 11...51

n : 1157...4369

Figure 6: DUAL EC DRBG detailed diagram focusing on the inner state feedback seed is
only used once. input is optional. r is the random output. x(s · P) represent
the x coordinate of the s ·P operation result in the curve. LSB240(x) represents
the least significant 240 bits of x. Constants are for demonstration and come
from NIST 800-90A Appendix A.1.1 Curve P-256

A textual example of usage with an inital seed and 240 output bits:

1. User starts by providing a seed. This will be the input to the first inner state loop

2. Inner state calculates s = LSB240(x(seed · P)) and passes it to the output part
and also feedbacks it to it’s input again.

3. Output bits are calculated as r = LSB240(x(s ·Q))

4. Next inner state input is s, so we re-calculate s = LSB240(x(s · P)). If the
user would like to enter additional input, s would, after that step, get xor-ed as
s = s⊕ hash(input)

We can see how the inner state can be viewed as a chain of operations (Figure 7,
Equation 4), in our case fP () involves the multiplication of a scalar with a point P in a
eliptic curve. This makes returning back to the previous state impossible (would mean
the ability to break the discrete log problem in eliptic curves).

s0 = seed→ s1 = fP (s0)→ · · · → sn = fP (sn−1) (4)

The output applies a non-reversible function to preclude calculating the inner state sn
based on rn, in this case is also the multiplication of a scalar (the state) and a point Q
in the curve. The definition of g() doesn’t matter for the discrete-log based “protection”,
g discards Y coordinate from the output point and takes LSB240 bits form the resulting
X. See how this operation is represented in the green part of Figure 7.

rn = g(sn ·Q) (5)

12

s0 f(s0) s1

g(s1)

r1

f(s1) s2

g(s2)

r2

f(s2) s3

g(s3)

r3

f(s3)

Figure 7: Sequence diagram for generating three 240 bit values of randomness in
DUAL EC DRBG (without additional input). s0 is meant to be the seed. f(s)
is a function that multiplies the scalar s by a curve point P and returns the
240 least significant bits for the X coordinate of the resulting point. g(s) is
an equivalent function but operating with a curve point Q. The inner part is
shown in red and the outer output part is shown in green.

As we can see, Dual Eliptic Curve DRBG security is based on the intractability of
the P = bG scalar finding problem in secure elliptic curves (elliptic curve discrete log
problem) as previously explained (Section 4.1). The inner state is protected by the stated
elliptic curve discrete log problem. Recovering the inner state would imply the ability of
predicting all future outputs and in consequence, breaking the algorithm. The green part
of Figure 7 is the one that really protects the algorithm, the red part makes impossible to
learn previous values, but as you can compute forward, the algorithm would already be
broken as you could predict, with a 100% success rate, all future generated bits samples.

4.4 The Backdoor

Although the existence of a NSA backdoor cannot be mathematically proved nowa-
days, the mathematical possibility of introducing a backdoor, along with the history of
standarization irregularities it had, make the NSA backdoor in DUAL EC DRBG a likely
scenario.
DUAL EC DRBG includes two crucial parameters, the points in the curve P,Q. P has to

be our generator for the choosen curve [BK12, p.77], while Q holds no special relation to
P , it has to be a point on the curve and it’s used to protect the inner state.

If Q is randomly choosen in a secure way, there is no possibility of a backdoor and the
algorithm is safe from backdoors. The problem comes where P,Q come predefined (as
it’s indirectly enforced). A malicious attacker could craft P,Q and a secret as following:

d · P = Q → e · d · P = e ·Q→ P = e ·Q (6)

Attacker selects a secret scalar d

Now there is a hidden relation between P and Q

Finds e such that e · d = 1 mod r (r is order of EC)

13

Now based on Equation 6, if an attacker gives you the resulting (P,Q) pair, you cannot
prove the existence of a d or e that relates P and Q because that would mean solving
the discrete log problem in eliptic curves: P = e ·Q (find scalar e based on (P,Q)).

Now if you run DUAL EC DRBG with the attacker-given parameters and the attacker also
has access to the random bits r of output (something very common, for example in some
padding scheme), it can run the following attack:

1. Bruteforce 216 bits combination to recover the X coordinate of the elliptic curve
point. Remember the output is 256 bits and we truncate it to 240 bits only.

2. Solve the elliptic curve equation for candidates to get Y , now an attacker would
have (X,Y) candidates. Discard any guess that cannot belong to the curve.

3. Knowing that X = rn = sn ·Q, an attacker could multiply X (which is the random
output intercepted rn) by e to build the following equation:

e ·X = e · sn ·Q→ sn · eQ → sn · P (7)

Next RNG inner state!

Multiply by hidden calculated e

The attacker nows the hidden e ·Q = P relation!

4. See how the attacker “bypassed” the discrete log elliptic curve problem by previously
knowing the relation. Now the attacker knows sn · P which is the internal state.

5. An attacker can compute all future random bits. In case the user introduces random
input (see Figure 6), the attacker would have to re-run the attack or to guess the
input of the user (could be doable if naive inputs such as time are used).

Again, demonstrating the existence such relation between P and Q is imposible
nowadays as it would mean breaking the elliptic curve discrete log problem. Admire5 the
niceness of a backdoor that, even with clear evidence, cannot be demonstrated and in
consecuence, legally atributed to any group.

Now a lot of questions arise regarding the choices of P,Q and the possibility of making
the bruteforcing step intractable. They were indirectly answered in Section 4.2 but we’ll
summarize them here explicitly.

How default (P,Q) were generated? Textually: “NSA generated (P , Q) in a secure,
classified way.” [BLN15, p.9].

Why not discard more bits? Discarding more bits would harden the bruteforce
step, even could solve the random bias [Gjo05] problem as stated in [Kel14, p.21]. The
idea was never implemented, the performance of the algorithm was bad enough that
discarding bits would imply more “rounds” to generate the same ammount of random
bits.

5As much as we do.

14

Why not randomly generating P,Q? It was an available option lightly explained in
NIST’s standard appendix. By using custom (P,Q) pairs, the device wouldn’t get FIPS
140 certification [BK12, p.77]. At the end, most libraries used standard, NSA-provided,
(P,Q) values.

4.4.1 Real Life Exploitability

Even if at this point DUAL EC DRBG is completely broken, depending on the design and/or
implementation of certain protocols can make the exploitation a bit harded. In this
small section we’ll give a small showcase of an example, and how again, RSA Security, is
involved.

Assumming we want to intercept TLS traffic from machines that are using DUAL EC DRBG,
we would, as the NSA, need 240 consecutive bits of randomness coming from DUAL EC DRBG

for which we have the kleptographic backdoor.
The problem is that implementations of TLS often release only 224 bits of consecutive

randomness, which would make the attack 232 complex, which nowadays is tractable.
During 2006, 2008, 2009 and 2010 there were four proposals of TLS extensions that

increased the amount of PRNG output [BLN15, p.18]. None of them got accepted, but
RSA BSAFE library implemented “Extended Random” extension [Res08] as an option.
A 2012 summary of TLS monitoring shows that one each 77000 connections request this
extension.
All the TLS proposals that wanted to increase the PRNG output would have made

DUAL EC DRBG easier to exploit (even if they were unrelated). They all got discard but
still, we can see a non-oficial extension implemented in BSAFE that made DUAL EC DRBG

easier to exploit.

4.4.2 Other Problems

Even with the possible kleptographic backdoor that DUAL EC DRBG can have, the algorithm
design is poor in other aspects completely unrelated to this trapdoor. Two of the main
critics were it’s statistical bias and performance, there was no apparent reason to push
this algorithm (beside the requested defense niche usage) as it performs worse than
symmetric-based PRNGs and it’s statistical bias is much higher.

Statistical Bias Berry Schoenmakers and Andrey Sidorenko formulated in a paper
[SS06] how DUAL EC DRBG output bits were biased and how they could differentiate random
output with the RNG output with a significant (compared to other RNGs) success rate.
Based on Brown’s paper [Bro06] findings that siQ acts as a random point in the curve,
they defined ϕ(r) (being r = LSB240(x(siQ))) as the number of points of the curve
that, after the LSB operation, match to the same bit block. They found this values are
higher than the expected 216, introducing a bias. If the probability of a certain output
block appearing is ϕ(r)

#E(Fp)
and #E(Fp) is constant, the probability is tied to ϕ(r). They

calculated the expected ϕ(r) and an experimental one and the latest was higher. This
created a distinguisher that could predict the PRNG with success rate of 0.50078. The

15

process would be calculating ϕ(r) for the shown block and if ϕ(r) > 216 conclude that
the block was coming from DUAL EC DRBG and not a random uniform distribution.

Performance By relying on rather complex elliptic curve operations, DUAL EC DRBG

had a very poor performance [Kel14, p.46]. Even if elliptic curve operations can be
simple and can be computed “apparently fast” in modern devices, they might not be the
best choice for embedded devices or when thousands of operations are required in short
periods of time to generate large random bitstrings. There are much better solutions
which even include CPU support for parts of their computations, which accelerates the
proces. We’ve seen that research papers show it’s performance to be “thousands of times
slower than alternatives”.

5 Conclusion

In this final section we want to share our findings and conclusions we’ve taken during the
development of the report. Even if Random Number Generations can be seen important
for certain crypto-related tasks such as key generation, we have to be careful regarding
their usage on nonces too. Needless to say, non-cryptographers should never build (or
implement) a RNG on their own, but instead use some good implementation of a well-
known algorithm that has been put under appropriate scrutiny. As we’ve seen in the three
shown scenarios, misused or bad/weak RNGs broke the entire security of the systems
even in constrained enviroments. The takeaway from this report should be to put as
much attention to RNGs as one puts on encryption modes, primitives and protocols,
because weak RNG can have disastrous to an (otherwise) flawless cryptosystem.

References

[Ada14] Aris Adamantiadis. DUAL EC DRBG Backdoor: A proof of concept. Feb.
2014. url: https://blog.0xbadc0de.be/archives/155.

[Ami23] Nils Amiet. Polynonce: A Tale of a novel ECDSA Attack and Bitcoin Tears.
Mar. 2023. url: https://research.kudelskisecurity.com/2023/03/06/
polynonce-a-tale-of-a-novel-ecdsa-attack-and-bitcoin-tears/

(visited on 05/22/2023).

[BK12] Elaine Barker and John Kelsey. “NIST Special Publication 800-90A Revision
1”. In: NIST Technical Series (Jan. 2012). url: https://nvlpubs.nist.
gov/nistpubs/Legacy/SP/nistspecialpublication800-90a.pdf.

[BLN15] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. “Dual EC: A
Standarized Back Door”. In: Independent (July 2015).

[Bro06] Daniel R. L. Brown. Conjectured Security of the ANSI-NIST Elliptic Curve
RNG. Cryptology ePrint Archive, Paper 2006/117. https://eprint.iacr.
org/2006/117. 2006. url: https://eprint.iacr.org/2006/117.

16

https://blog.0xbadc0de.be/archives/155
https://research.kudelskisecurity.com/2023/03/06/polynonce-a-tale-of-a-novel-ecdsa-attack-and-bitcoin-tears/
https://research.kudelskisecurity.com/2023/03/06/polynonce-a-tale-of-a-novel-ecdsa-attack-and-bitcoin-tears/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-90a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-90a.pdf
https://eprint.iacr.org/2006/117
https://eprint.iacr.org/2006/117
https://eprint.iacr.org/2006/117

[BV05] Daniel R. L. Brown and Scott A. Vanstone. “Elliptic Curve Random Number
Generation”. 60/744,982. Jan. 2005. url: https://projectbullrun.org/
dual-ec/documents/11336814.pdf.

[Che+14] Stephen Checkoway et al. “On the Practical Exploitability of Dual EC in
TLS Implementations”. In: USENIX (Aug. 2014). url: https://www.usenix.
org/system/files/conference/usenixsecurity14/sec14-paper-checkoway.

pdf.

[EDN11] EDN. The Sony PlayStation 3 hack deciphered: what consumer-electronics de-
signers can learn from the failure to protect a billion-dollar product ecosystem.
May 2011. url: https://www.edn.com/the-sony-playstation-3-hack-
deciphered-what-consumer-electronics-designers-can-learn-from-

the- failure- to- protect- a- billion- dollar- product- ecosystem/

(visited on 05/24/2023).

[fai10] failOverflow. Console Hacking 2010. Dec. 2010. url: https://fahrplan.
events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_

console_hacking_2010.pdf (visited on 05/24/2023).

[Gjo05] Kristian Gjosteen. “Comments on Dual-EC-DRBG/NIST SP 800-90”. In:
(Dec. 2005). url: https://web.archive.org/web/20110525081912/http:
//www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf.

[Gre13a] Matthew Green. A few more notes on NSA random number generators. Dec.
2013. url: https://blog.cryptographyengineering.com/2013/12/28/a-
few-more-notes-on-nsa-random-number/.

[Gre13b] Matthew Green. The Many Flaws of DUAL EC DRBG. Sept. 2013. url:
https://blog.cryptographyengineering.com/2013/09/18/the-many-

flaws-of-dualecdrbg/.

[Hen13] Rick Henderson. Sony agrees settlement with George Hotz (aka Geohot) in PS3
jailbreaking case. Apr. 2013. url: https://www.pocket-lint.com/games/
news/playstation/109593-sony-agrees-ps3-geohot-settlement/ (vis-
ited on 05/24/2023).

[Kel14] John Kelsey. Dual EC in X9.82 and SP 800-90. Ed. by NIST. May 2014.
url: https://csrc.nist.gov/csrc/media/projects/crypto-standards-
development-process/documents/dualec_in_x982_and_sp800-90.pdf.

[Mac23] Marco Macchetti. A Novel Related Nonce Attack for ECDSA. Cryptology
ePrint Archive, Paper 2023/305. https://eprint.iacr.org/2023/305.
2023. url: https://eprint.iacr.org/2023/305.

[Men13] Joseph Menn. Exclusive: Secret contract tied NSA and security industry
pioneer. Dec. 2013. url: https://web.archive.org/web/20140102045805/
https://www.reuters.com/article/2013/12/20/us-usa-security-rsa-

idUSBRE9BJ1C220131220.

17

https://projectbullrun.org/dual-ec/documents/11336814.pdf
https://projectbullrun.org/dual-ec/documents/11336814.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-checkoway.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-checkoway.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-checkoway.pdf
https://www.edn.com/the-sony-playstation-3-hack-deciphered-what-consumer-electronics-designers-can-learn-from-the-failure-to-protect-a-billion-dollar-product-ecosystem/
https://www.edn.com/the-sony-playstation-3-hack-deciphered-what-consumer-electronics-designers-can-learn-from-the-failure-to-protect-a-billion-dollar-product-ecosystem/
https://www.edn.com/the-sony-playstation-3-hack-deciphered-what-consumer-electronics-designers-can-learn-from-the-failure-to-protect-a-billion-dollar-product-ecosystem/
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://web.archive.org/web/20110525081912/http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
https://web.archive.org/web/20110525081912/http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf
https://blog.cryptographyengineering.com/2013/12/28/a-few-more-notes-on-nsa-random-number/
https://blog.cryptographyengineering.com/2013/12/28/a-few-more-notes-on-nsa-random-number/
https://blog.cryptographyengineering.com/2013/09/18/the-many-flaws-of-dualecdrbg/
https://blog.cryptographyengineering.com/2013/09/18/the-many-flaws-of-dualecdrbg/
https://www.pocket-lint.com/games/news/playstation/109593-sony-agrees-ps3-geohot-settlement/
https://www.pocket-lint.com/games/news/playstation/109593-sony-agrees-ps3-geohot-settlement/
https://csrc.nist.gov/csrc/media/projects/crypto-standards-development-process/documents/dualec_in_x982_and_sp800-90.pdf
https://csrc.nist.gov/csrc/media/projects/crypto-standards-development-process/documents/dualec_in_x982_and_sp800-90.pdf
https://eprint.iacr.org/2023/305
https://eprint.iacr.org/2023/305
https://web.archive.org/web/20140102045805/https://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
https://web.archive.org/web/20140102045805/https://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
https://web.archive.org/web/20140102045805/https://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220

[NIS14] NIST. NIST Removes Cryptography Algorithm from Random Number Gen-
erator Recommendations. Apr. 2014. url: https://www.nist.gov/news-
events/news/2014/04/nist-removes-cryptography-algorithm-random-

number-generator-recommendations.

[Por13] T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA)
and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979. http:
//www.rfc-editor.org/rfc/rfc6979.txt. RFC Editor, Aug. 2013. url:
http://www.rfc-editor.org/rfc/rfc6979.txt.

[Res08] E. Rescorla. “Extended Random Values for TLS”. In: RFC IETF (Apr. 2008).
url: https://datatracker.ietf.org/doc/html/draft-rescorla-tls-
extended-random-00.

[Sch07] Bruce Schneier. Did NSA Put a Secret Backdoor in New Encryption Stan-
dard? Ed. by Wired. Nov. 2007. url: https://web.archive.org/web/
20150608034624/https://archive.wired.com/politics/security/

commentary/securitymatters/2007/11/securitymatters_1115.

[SF07] Dan Shumow and Niels Ferguson. On the Possibility of a Back Door in
the NIST SP800-90 Dual EC PRNG. Ed. by Microsoft. Aug. 2007. url:
http://rump2007.cr.yp.to/15-shumow.pdf.

[SS06] Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the Dual Elliptic
Curve Pseudorandom Generator. Cryptology ePrint Archive, Paper 2006/190.
https://eprint.iacr.org/2006/190. 2006. url: https://eprint.iacr.
org/2006/190.

[YY97a] Adam Young and Moti Yung. “Kleptography: Using Cryptography Against
Cryptography”. In: vol. 1233. May 1997, pp. 62–74. isbn: 978-3-540-62975-7.
doi: 10.1007/3-540-69053-0_6.

[YY97b] Adam Young and Moti Yung. “The Prevalence of Kleptographic Attacks on
Discrete-Log Based Cryptosystems.” In: vol. 1294. Aug. 1997, pp. 264–276.
isbn: 978-3-540-63384-6. doi: 10.1007/BFb0052241.

18

https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
http://www.rfc-editor.org/rfc/rfc6979.txt
http://www.rfc-editor.org/rfc/rfc6979.txt
http://www.rfc-editor.org/rfc/rfc6979.txt
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-extended-random-00
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-extended-random-00
https://web.archive.org/web/20150608034624/https://archive.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
https://web.archive.org/web/20150608034624/https://archive.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
https://web.archive.org/web/20150608034624/https://archive.wired.com/politics/security/commentary/securitymatters/2007/11/securitymatters_1115
http://rump2007.cr.yp.to/15-shumow.pdf
https://eprint.iacr.org/2006/190
https://eprint.iacr.org/2006/190
https://eprint.iacr.org/2006/190
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052241

	Introduction
	PS3 ECDSA Nonce Misuse
	History EDN2011
	Attack details fai2010,EDN2011
	Impact

	A Novel Related Nonce Attack for ECDSA
	Attack Details Mac2023
	Impact

	Dual Elliptic Curve Deterministic Random Bit Generator
	Background
	History & Standarization Process
	How DUAL_EC_DRBG Works
	The Backdoor
	Real Life Exploitability
	Other Problems

	Conclusion

