Power Aware Computing

Mechanisms for Power Draw Analysis on Mobile Devices

> DEV v1.3-RC1

&1 Ernesto Martinez Garcia & SLIDES & REPORT
me@ecomaikgolf.com

&, Marcell Haritopoulos

marcell. haritopoulos@student. tugraz.at
I Graz University of Technology
& Power Aware Computing LU SS23

B 23rd of November 2023

1s.ecomaikgolf.com/slides/power-aware-comp

Motivation

© Why Mobile Energy Consumption

¢ Mobile Devices took big part of the computing share in the last decade
¢ Big part of the modern economy & society is based on them
e Our smartphones runs without a power plug. The best battery wins the market

Objectives

e Show how devices we use daily manage power consumption
e Overview the paper as a baseline, but base the research on current techniques

e Android & Mobile Devices hardware update almost each year. Check curent state

Table of Contents

& Introduction
> Motivation

@ Model-based Energy Profiling
> Components
> Objectives
> Building

% System-Level Consumption

> Instrumentation
> Metering
9 SOC Estimation

Ll Power Modeling Methodology

> Objectives
> Classification

@ Energy Profilers
> Taxonomy

¥ Energy Diagnosis
2 eBugs
> Carat

Android Case Study

9 Subcomponents
> Profiling Apps

& i0S Case Study
> Profiling Apps

44 Recap
> Takeaways

Introduction

&

History of Batteries

@=; \obile Devices heavily depend on batteries to run
@ |n the case of smarphones, they condition the quality of the product

e More battery means more weight & size

e More battery means more CPU/GPU/TPU power
e More battery means more charging times

e More battery means more usage time

¢ And the respective inverses

@2 Smartphone battery is the feature that increased the least between 2010 and 2019
@5 In some cases, vendors can't increase the size the battery due to limitations

(> As a result, Consumption Optimization plays a leading role in mobile devices

User Endpoint Importance

& Who's using your product?

e A contract bussiness partner
e A skilled user
¢ Anon skilled user

©® Can we optimize power the same way for all of our products?

e Bussiness partner probably runs our code as intended by contract
e Skilled users might follow our guidelines for optimization
e Non skilled user might code infinite while (1) loops

#¢ See how there is a need for consumption control in the device

A This task is commonly done by at Operating System level

Model-based
Energy Profiling

\\|

Introduction

©® What's “Model-based Energy Profiling” about?

We leverage the following mechanisms/components:

Power Measure

Power Model Power Estimation

Power Profiler

To profile the energy consumption of:

System

Subcomponents

Applications

€ If we think about the challenge it proposes, it's tricky

\We have a system-wide power measurement

We could have percomponent measurement, but components are reused for tasks

How we identify which consumption comes from where?

Model-based Energy Profiling Definitions

k Power Measurement

Obtaining power (or current) consumption values directly from hardware.

[l Power Model

Mathematical model of power draw with variables that quantify the impact of usage

@ Power Estimation

Power draw consumption of a specific subsystem based on the Power Model.

¥¥ Power Profiler

Leverage previous techniques to estimate power usage at certain abstraction layers

Constructing a Model-based Energy Profiler

o

The development of it is divided in four phases

Method Select. Variable Selection Model Train.

Profile Evaluation

ok~ W N

Some of them are done in Laboratories & some on a Computer &%

A general overview of the process would be:

An expert chooses a Method

From the Method we get Models

An expert selects Variables for the Model

With the Parameterized Model, we train it with device “logs”
The Fitted Model output is evaluated

System-Level Power
Consumption Retrieval

*

External instrumentation

Q@ ldea: Measure overall power consumption using external tools

iE Multitude of options available:

k Power Monitor

Connects to the device's battery connector and directly powers it, while allowing the
monitor to measure the draw.

Figure: Example usage of Monsoon Power Monitor'

"Source:

https://tqrg.github.io/physalia/monsoon_tutorial

https://tqrg.github.io/physalia/monsoon_tutorial

External instrumentation

Q@ ldea: Measure overall power consumption using external tools

Multitude of options available:

& Voltage Meter

Place a resistor in series to the power source, use Ohm’s Law to deduce current.

Can operate on either the device's battery or external supply (but external supply is
preferred as battery voltage changes with state of charge)

Figure: NEAT power meter installed in a phonel[1, p. 8]

External instrumentation
Q@ ldea: Measure overall power consumption using external tools
A Mostly feasible only in laboratory environment:

e All of these methods at least require to open the phone
— Potentially destructive on some phones (e.g. adhesive and IP sealing)

e Mostly not portable, especially when not using the device's battery

Self-Metering

@ Idea: Include capabilities in the phone to deduce power consumption without tools

bk Open circuit voltage (0CV)

The voltage of the battery with no load attached.

(3 State of Charge (SOC)

The remaining charge capacity the battery holds, in percent.

® By measuring change in SOC over an interval, we can deduce the average current
draw using the OCV.

A But: Batteries are not ideal
— Battery models necessary

Self-Metering - Battery models

Basic Rint Model Basic Thevenin Model

Figure: Battery models|3, p. 39:6]

b Terminal voltage (Vi)

The voltage measurable across the battery’s terminals.

A Due to internal components, the terminal voltage drops depending on the current flow

A As a consequence, we are unable to measure true OCV (but come closet with low
power draw)

Self-Metering - Battery models

Basic Rint Model Basic Thevenin Model

Figure: Battery models|3, p. 39:6]

Rint Model Thevenin Model

Single ohmic resistance in series. Additional capacitor models transient
response of charging and discharging.

Vt:VOCV_l*R vt:VOC\/_VC_l*R

SOC estimation
® SOC can usually not be measured - it needs to be estimated
A As it is estimated, estimation errors propagate to energy profiles

There are two methods available:

[#a Voltage-based estimation

@ Use strictly decreasing discharge curve to map OCV to SOC.

A Mapping is fragile and depends on the batteries properties (age, model, ...)
— Personalized discharge curve must be updated regularly

A Battery voltage depends on a lot of factors: Age, temperature, (dynamic) load, ...
— Significant estimation error

SOC estimation
® SOC can usually not be measured - it needs to be estimated
A As it is estimated, estimation errors propagate to energy profiles

There are two methods available:

Coulomb counting

@ Accumulate drawn current over time by directly sensing current:

SOC = SOCint — [w2t— dt

Cuseable

A Usable battery capacity C seaple Must be estimated and depends on various factors:
Age, temperature, charge cycles, ...

A Offset current accumulation error due to ADC must be compensated (e.g. long idle
times)

Power Modeling
Methodology

sl

Introduction
O Power Models measure power consumption based on different inputs
Models are usually pre-trained with inputs & logs measurements
This yields a mathematical model that for a certain input, can estimate power
® Power Models obviously have an error percentage
Error can be obtained by comparing results with hardware-instrumented devices
& Depending on input type, different classifications arise

A Depending on available information, different classifications arise

Input-type Classification

@® Utilization Based Models

Correlates power draw with measured resource usage.

An example of this mechanism is CPU’s Hardware Performance Counters.

<t Event-Based Models

Captures the power draw based on events (syscalls, state changes, ...).
Useful for HW components with nonlinear power draw.

Handles tail energy better: Some devices delay entering sleep when no longer in use.

</> Code Analysis Based Models

Estimate power by inputing the source code via static analysis.

Information-Available Classification

@& Whitebox Modeling

We can capture consumption behaviour with Finite State Machines (FSM).

FSM's would describe the consumption in each state and the cost of transitioning them
We require knowledge of the states and the triggers for transitioning them

Usecase: Modeling the wireless subcomponent, as different states are important

@ Blackbox Modeling

We can't capture high granularity specific consumption behaviour.

We rely on models like linear regression with fitting to get an approximation

Assumption of linearity comes with limitations.

Usecase: Modeling the screen brightness subcomponent.

Energy Profilers

&®

Categories of Energy Profilers

iE Energy profilers can be divided into three categories:

e On-device profilers with on-device model construction
e On-device profilers with off-device model construction
e Off-device profilers (with off-device model construction)

iI= No research about off-device profilers with on-device model construction is known

Copying model for offline processing cubersome; processing can be done on device

On-device profilers with on-device model construction

e.g.: Nokia NEP (Symbian), Qualcommm Trepn, PowerBooter, Sesame, ...
@ These profilers rely on battery state updates through self-metering

§S Only one profiler needed some external calibration (but no external measurments), all
others are independent from external tooling.

|~ Most profilers use linear regression models, but some profilers automatically generate
models

@ Various unique approaches (voltage vs. current, special HW support, ...)

¥ Qualcomm’s Trepn is most accurate (close to Monsoon Power Monitor)!
Snapdr. SoCs has hardware instrum. using sense resistors and & fuel gauge in PMIC

Able to record fine-grained subcomponent energy consumption (CPU, GPU, ...)

On-device profilers with off-device model construction

e.g.: Android Power Profiler, PowerTutor, PowerProf
@ Depend on vendorprovided offline calibration and power measurement phases
t. Integral part of mobile operating system

@ Profiles vary on the supported HW components and states, affecting accuracy

(@' Android’s Power Profiler is discussed later

@ PowerProf is able to learn model unsupervised with genetic algorithms

Off-device profilers

e.g.: PowerScope, JouleWatcher, Eprof, ...

@ Profile app's resource utilization (time and/or syscalls), performs code analysis
(on-device or emulated)

iE Generate model by mapping activities to energy consumption based on utilization or
FSMs.

|#* Usually supports accurate and fine energy consumption characterization of app,
subsystem and device (suitable for debugging apps)

Generate model by mapping activities to energy consumption

Energy Diagnosis

Energy Bugs

¥¥ Energy Bug (eBug)

“[Aln error in the system, either application, OS, hardware, firmware or external that
causes an unexpected amount of high energy consumption by the system as a whole”[5,

p. 1]

A eBugs are not traditional bugs: Comptation and stability unaffected

A Hard to detect and pinpoint due to diversity of causes:

Figure: Categorization of eBugs [3, p. 39:25]

Energy Bugs

¥¥ Energy Bug (eBug)

“[Aln error in the system, either application, OS, hardware, firmware or external that
causes an unexpected amount of high energy consumption by the system as a whole"[5,

p. 1]

@ Energy diagnosis engine can give insights in eBugs
O Depending on the tool, answers (some of) these questions:

¢ What is the normal power usage of the program? What is abnormal?
¢ |s power optimization beneficial?
¢ |s higher power draw caused by the user or by bad system configuration?

Example: Carat

A Local instrumentation on one device, user, system configuration, ..., not sufficient for
classification of power draw

A App must be run under different conditions to see if (and how much) changing aspects
of system improves battery.

Q ldea: Use collaborative approach (community) to analyze app under various conditions

@ Carat measures reference distribution of discharge rates during normal usage

Example: Carat

@& When new app is introduced, its impact on average discharge rate is measured

@ Depending on inpact to average discharge rate, app may be categorized as energy hog
or bug:

> Energy Hog

An app is a energy hog if its usage drains battery much faster than the average app
(affecting the entire device community).

Some energy hogs may have good reasons (e.g. camera app), but classification may
make user aware of energy drain.

Drain of energy hogs are unlikely to be fixed by app restarts - should run as little as
possible

However: Apps using energy intensive resources (e.g. radios) are not necessarily hogs
(if resources are not overused)

Example: Carat

@& When new app is introduced, its impact on average discharge rate is measured

@ Depending on inpact to average discharge rate, app may be categorized as energy hog
or bug:

Y¥ Energy Bug (Carat)

An app is a energy bug if it drains the battery much faster on a device than on the average
on other devices.

Due to the collaborative nature, detecting energy bugs over a variety of configuration
(usage patterns, devices, configuration) may be easier and causes of them more isolated.

Example: Carat

iE Carat app shows list of hogs and bugs

© Allows user to perform actions (kill hogs, restart bugs) and shows expected
improvement by action

& App can also notify user on OS updates that improved efficiency across the
community

N\ After 90+ days, Carat's action recommendations improved battery live by 41% for
long-term users (compared to 7.9% in control group)

@& 95% of the estimated time improvement (with a confidence of 95%) were correct.

Android Case Study
lﬁl

Introduction

© Android is one of the biggest smartphone OS

&, Due to the naturity of the hardware, battery optimization is a key part of Android

As Android is an Open Source project, we can study exactly how it works! ©

The complete profiling system is based on three subcomponents:

BatteryStats Power Profile

Power Model

€ Android has an On-Device Profiler with Off-Device Model Constru

So the Model comes pre-initialized when you buy a device

4

Profiling is done on a daily basis on the device

ction

BatteryStats - Android

@ BatteryStats is responsible for tracking hardware usage
Records usage time along timestamps
Does not directly measure energy draw from the battery

= Has two main working mechanisms:

4 Push Mechanism

Subcomponents push the component state change to the BatteryStats daemon.

& Polling Mechanism

BatteryStats pulls information periodicallt from the proc/ filesystem

BatteryStats usually saves 30min of statistics in case of reboot

N It also provides statistics to requestisting services

Power Profile - Android

O BatteryStats uses Power Profile values to estimate power draw per component

© Android is installed in heterogeneous hardware. Who provides this values?

Each Android device vendor has to fill it with custom values in Android mainline

A Android deliberately has incorrect default values to force vendors to do measurements

</> main/core/res/res/xml/power_profile.xml

1 <item
2 <item
3 <item
4 <item
5 <item
6 <item
7 <item
8 <item
9 <item
10 <item
11 <item
12 <item
13 <item

14 [...]

name="screen. full.display@”>0.1</item> <!-- ~100mA -->

name="bluetooth.active”>0.1</item> <!-- Bluetooth data transfer, ~1@mA -->
name="bluetooth.on”>@.1</item> <!-- Bluetooth on & connectable, but not connected, ~@.1mA -->
name="wifi.on”>0.1</item> <!-- ~3mA -->

name="wifi.active”>0.1</item> <!-- WIFI data transfer, ~200mA -->
name="wifi.scan”>0.1</item> <!-- WIFI network scanning, ~10@mA -->

name="audio”>@.1</item> <!-- ~10mA -->

name="video”>0.1</item> <!-- ~5@0mA -->

name="camera. flashlight”>0.1</item> <!-- Avg. power for camera flash, ~16@0mA -->
name="camera.avg”>0.1</item> <!-- Avg. power use of camera in standard usecases, ~550mA -->
name="gps.on”>0.1</item> <!-- ~5@0mA -->

name="radio.active”>0.1</item> <!-- ~200mA -->

name="radio.scanning”>@.1</item> <!-- cellular radio scanning for signal, ~1@mA -->

Power Model

O With usage times & measured power values we can estimate consumption

Android

Subcomponent/
Application Statistical Variable Models
Screen Time spent at brightness level i, | Esereen = 51 (Porightness * Tori—i)

bri—i

System Idle

The total duration Tso; time
spent when screen is on, Tyoreen0n

Erdte = Peputdle % (Ttotal = TscreenOn)

Radio (Cell Time spent when signal strength | Epopitestandsy = (221 Potrengeh % Tstr—i) +
Standby) is i, Tsr—i; total time spent in PradioScan * Tscan)
scanning, Tscan
Phone (Call) Duration of a call, i, Tean1—i Eeatt = 351 (Peatt % Tealt)
Bluetooth TbivetoothOn- Pingcount E, = (P x Ty hon) +
(Pingeount X PatCommand)
WiFia, Total duration an app, i, uses Euiiagy = Tuifiapp—i X Paifion +
Wi-Fi, Tyifiapp-i; scan time for TuifiScan-i X PuifiScan
the app, TifiScan-i
Wi-Fio apps Total Wi-Fi usage time Tuifigiobat; | Buifinoapps = Tuificiobal = Xiz1 Tuwifiapp—i) %
Wi-Fi usage time by an app, i, wifiOn
TwifiApp-i -
CPUypy Time spent at speed, i, Tspeed-i} Eeputpp = 001 EN% X (TappCode +
time spent in executing app code, | P 1 Topeed=i
TappCode; time spent to execute sysCode) X Lspeed—i
system code, TiysCode
Wakelock Wakelock ime, TuakeLock EvakeLock = (PuakeLock % TwakeLock)
GPS GSP usage time, Typs Egps = (Tgps X Pgps)
Mobile Data Radio active time, T}qdioActive mobile Bps = (mobile Data x 1000/ Tyqqio Active)
(Byte/Sec)
Wi-Fi Data Wi-Fi active time, T\ fi active wifiBps = (wifiData x 1000/ Ty;f; Active)
(Byte/Sec)
Average Energy Epye = (% x wifiData + %ﬂﬁﬁﬁ x
Cost per Byte mobile Data)/(wi fi Data + mobile Data)
App Eapp = Ecpuspp + EvakeLock + Euwifiapp + Egps +

(tepBytesReceived + tcpBytesSent) x Epyre

34/46

Profiling Android Applications

Ll Android provides a mechanism to access power estimation mechanisms

>_ adb shell dumpsys batterystats -checkin

9,0,i,vers,11,116,K,L

9,0,1i,uid, 1000, android

9,0,1i,uid, 1000, com. android. providers.settings
9,0,1i,uid, 1000, com. android. inputdevices

9,0,1i,uid, 1000, com.android.server.telecom

sd, 1820451,97,s-, p-

sd, 3517481,98,s-,p-
t,0,8548446,1000983,8566645,1019182, 1418672206045, 8541652, 994188
n,0,0,666932,495312,0,0,2104, 1444
,6794,0,8548446,8548446,0,0,0,666932,495312,0,697728,0,0,0,5797,0,0

S Q o oo

Y This raw information can be plotted via different tools

Android Energy

Profiler

Profiler .app (Google Pixel 2 XL) & —
sessions + .0 O®eo
13470
PP
Smin30sec
cpu 1%
" oox
s
MEMORY R R . . 1464M8
~2sems
NETWORK — Sending:0KB/s = Receiving: 0K/s
2
e
ENERGY None
Medium
ahe
(LT — ‘ - R
0500000 0505000 0515000 000 T os25.000

—

36/46

Android Energy Profiler

& ENERGY ~ Modeled @ (CXCXO) >
1 <

ui.ImageDetailActivity - stopped - destroyed ui.Imag... ui.ImageDetailActi... ui.ImageGridActivity

ENERGY CPU: None Network: None M Location: None

Medium

00:53.855
CPU: Medium
Network: Light

M Location: None

M Location: 0
Wake Locks: 1
M Alarms & Jobs: 0

||| (U | H" ||| ||| il ||l||| l |||I

000 01:00.000 01:05.000 01:10.000

SYSTEM

Android Energy Profiler

Filter java
@ apply(Bitmap bitmap) {
PowerManager pm = (PowerManager) .getSystemService(Context.

PowerManager. WakeLock wakeLock = pm. newhakeLock (+ getClass().getSimpleName())

wakeLock.acquire(); (4

[] pixelsDst = [bitmap.getWidth() * bitmap.getHeight()]
[1 pixelsSrc = [bitmap.getWidth() * bitmap.getHeight()]
Filter > apply()
splayingbitmaps (Google Pixel_2_XL_API_P)

& ENERGY ¥ Modeled @

Wake Lock Details
ui.ImageDetailActivity - stopped -... ui.l... ui.lmage... ui.ImageGridActi...

Tag: filter:GrayscaleFilter
ENERGY CPU: None B Network: None W Location: None

Level: Partial
Medium Callstacks: 1
¥ 00:00:43.757 Acquired 3
| 1 I apply:24, Filter (com.example.android.displayingbitmaps. util.filter
doInBackground:162, ImageDetailFragment$FilterTask |
dolnBackground:134, \mageDeta\\Fragment$FmerTask co
call:313, AsyncTask$2 (
w I e feva.tLconcn
SYSTEM run:256, AsyncTask$SerialExecutor$1 (:

5.000 '30.000 '35.000 '40.000 '45.000 '50.000 '55.000 '01:00.000 01:05.000 01:10.

Show | All v © 41.385 - 45.901

System Event Description Called By Timeline

Wake Lock: Partial ~filter:GrayscaleFilter Filter.apply 2 430

Battery Historian

Battery Historian

File: bugreport-sailfish-OPR1.170413.001-2017-04-14-10-46-31.zip~bugreport-sailfish-OPR1.170413.001-2017-04-14-10-46-31.txt

Device: Pixel OPR1.170413.001

HistorianV2 System Health EventLog

etrics | v | Show bars @

running

App Processor wakeup
Kernel only uptime
Userspace wakelock
Long Wakelocks
Screen

Top app

Activity Manager Proc
AM Low Memory / ANR
Crashes (logcat)

Doze

JobScheduler
SyncManager

GPS

BLE scanning

Phone scanning
Phone state

Network connectivity
Mobile radio active
Mobile signal strength
Wifi ful lock

ifi scan

Wifi supplicant

Wifi radio

Wifi signal strength
Wifi running

Wifi on

Foreground process
Battery Level
Goulomb charge

x

Custom Historian

Restrict domain | Default | v| Regexp search

Build:
Android ID: 4031017308202367544

Analyze a ne

Battery Level x

r100

\DEDS 10110 10‘15
Time (America/New_York EDT UTG-04:00)

10:25

Erors

jorer) Aioes

37/46

Battery Historian

App Selection System Stats History Stats App Stats
Sort apps by
Duration / Realtime: 42m10.598s
Name -
Choose an application v| Aggregated Checkin Stats:
Tables " Show metrics with 0 values.
~ System Stats Copy
Aggregated Checkin Stats Metric Value
Screen Off Discharge Rate (%/hr) 6.55 (Discharged: 2%)
Device's Power Estimates
Screen On Discharge Rate (%/hr) 15.10 (Discharged: 6%)
Userspace Wakelocks Screen On Time 23m50.612s.
SyncManager Syncs Screen Off Uptime. 8m39.306s
Userspace Wakelock Time 6m20.288s
JobScheduler Jobs
Sync Activity 5m46.689s (71 times)
CPU Usage By App JobScheduler Activity 6m13.044s (106 times)
Mobile Radio Activity Per App Wakeup Alarms 219 times
Mobile Trafic Per App CPU Usage 22md5.447s user time, 16mS5.655s system time
Kernel Overhead Time 2m19.018s
WiFi Scan Activity Per App Kernel Wakelocks 8mB.001s (7908 times)
WiFi Full Lock Activity Per App Wakeup Reasons 1m23.864s (185 times)
Wii Traffic Per App Mobile KBs/hr 40622.81
WiFi KBs/hr 716.43
Kernel Wakesources
Total WiFi Scan Activity 6m21.74s (967 times)
Kernel Wakeup Reasons Total WiFi Full Lock Activity 5m30.8555
App Wakeup Alarms Mobile Active Time 27m11.858s
Signal Scanning Time 31.216s
App ANRs and Crashes
Full Wakelock Time 12.369s
GPS Use By App Interactive Time 23m47.619s
Time Spent In Each App State Total GPS Use 10m28.921s (15 times)
Wit Bruwar llsana 0 (RO nr 0 4G bl

37/46

Battery Historian

App Selection System Stats. History Stats App Stats
Sort apps by
Copy
Name -
com.google.android.youtube (Uid: 10116) x|v Application com.google.android.youtube
Version Name 12.14.12
Tables
Version Code 121412644
» System Stats
uD 10116
» History Stats .
Device estimated power use 0.02%
~ App Stats Foreground 2 times over 3s 410ms
Misc Summary CPU user time 4s 920ms
Network Information CPU system time 683ms
Device estimated power use due to CPU usage 0.00%
Wakelocks
= Network Information:
Process info
Sensor Use Search: Copy
Mobile data transferred 99.41 KB total (71.18 KB received, 28.23 KB transmitted)
Wifi data transferred 0.00 bytes total (0.00 bytes received, 0.00 bytes transmitted)
Mobile packets transferred 226 total (109 received, 117 transmitted)
Wifi packets transferred 0 total (0 received, 0 transmitted)
Mobile active time 14s 890.63ms
Mobile active count 2
Modem idle time 0s
Modem transfer time 85 745ms total (8 410ms receiving, 335ms transmitting)

+ Wakelocks:

+ Process info:

+ Sensor Use:

37/46

Application Developer Safeguards

U Android restricts code that could waste power inefficiently
You can't have services running permanently
They even patch bypasses to this restriction (recent Android 14 watchdog technique)
You have to use their APls, which are implemented properly in a powerconscious way
U Android restricts code when device is unused: Project Doze
During sleep state in Doze:

* Apps can't access the internet

* App wakeloks are ignored

¢ WiFi Scans can't be done

® SyncAdapter and JobScheduler is deferred

Doze exits sleep state on: interaction, device movement, screen on, inminent alarm

10S Case Study

Profiling i0S Applications

Ll Apple provides an official mechanism to measure energy on i0S applications

Perapplication, one can study power usage per subsystem/component
Apple also assigns an overall usage: Low, Medium, High

¥ Measurements can be done through XCode'
</> Developers can use this information to optimize power in their apps

& We've also found papers & articles regarding API usage recommendations

L https://developer.apple.com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-i0S/MonitorEnergyWithXcode.html

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html

Profiling i0S Applications

Zero KBl

Energy Impact

Legend

©0® > W (iDemoBos0S) B Runring DemaBots a IS (mi[=]=]
B R QM OED G B < >| EnegyRepon <o
v {8 DemoBots PI0 5420 Q0 Energy
so%
e Utilization Average
Low

Zarokers
Low Low 0%
& Energy Impact Energy Impact Overhead

Ji-lﬂilﬂlﬂiiﬂlﬂﬂﬂlﬂiﬂiﬂ

Cost M Overhead

asa resultof

Gost
perform that work.

High CPU Utilization

work your app performs.

Time Profe.

Network

Aways

possible when nt direcly responding o user input

Network profile

your
whanever possible to reduce overhead.

a5p.

Location
Request locatic only when truly

app. More

1|0 © [vemosors

41/46

Profiling i0S Applications

v [Demosiots 70 253

o @ &<
(X}

5%
2837M8

Low
zeroK@ls

ZoroKBs

s2¢Ps

> couReport

cPU

Usage over
ime

ouration: 3356
Figh: 160%.
Low: 1%

Threads
Thread 1
Thread 3
Thresd 4

Threads

putosts.sm. 7530390 (6)

Thiead 7

Thresd s

Percentage Used

-\ 25%

=
s
Y
[
A
y

1
< | © | vemosors

Profilein Instruments

Usage Comparison

Fron
i

® < 00

<h>

41/46

Profiling i0S Applications

ece » nm
BRQAA O © & |88/ < > EoiskRepont

v @ pemosots io 253 (X

Disk
25%

26378 Reading

Low

® 0.0ks/s

oKl per Second Total
s27ps.

Reading and Writing Rates

On Demand Resources

Open Files
Descriptor e Oevice sizefottset
o cHR 50331680 O

o cHr 8a3sase 0

23.2mB

Writing

® 0.0ks/s

W oRead W writen

Staus

Mot Dowrioaded

Idevinil

Per Second

© Fier

41/46

Profiling i0S Applications

®0® > W A CustomHTTPProtocol) i iPhone 8.

B RQAALOEDO @ @<
v Il customiTTPProtocol 705 @ (D
ey ™
5 are 1081v8
zero Kels

Zero Kejs

> @ Network Report

Network

Receiving

® 0.0«ks/s

Per Second

Receiving and Sending Rates

Active Connections
Protocol Local Address

Tep mataioets

TcP 4001
TeP matatoets
TP maasnets
TeP matat0ets
TcP maasnets
TeP mata0ets
cp
Tep
cp

TeP mata0ets
ToP 40814
TeP mataioets

Local port

Running CustomHTTPProtocol on iPhone B

3.0mB

[

Total

Remote Address

2322123202
2322123202
2322123202

2@ | <7 | B CusomHTTPProtocol

W Received 1 Sent

a3 en0
a3 o0
8 0
0 0
80 o0
0 en0
& 0
80 en0
80 0
s en0
a3 en0
80 0
a3 en0

Sending

® 0.0ks/s

Per Second
sute Bytesin
Estabisned 595,182
Estabished 4100
Estabisned 230,766
Estabished 215594
Estabished 166,087
Estabished 328,096
Estabisned 49475
Estabisned 87722
Estavisned 650,073
Estabisned 266,873
Estabisned 109,566
Estabisned 158,301
Estabisned 362,384

68.4 kB

Total

BByesin Byesout aBytesO

cccocecoocoooo

41/46

Models Used
® Which models does Apple use then? How do they calculate them?
@ ios is closed source, Apple is reticent on its internals

® Sadly we can't find Android’s equivalent information for i0s

Summary

«

Recap & Takeaways

@ Due to limitations, power optimization is a keystone in mobile devices
Q Estimating per-module power draw is not trivial and requires modeling
&2 Vendor ships software components with pre-trained power models
¥ When developing applications, we can make use of energy profilers

A Operating Systems are very strict on energy usage

Bibliography

(1]

(2]

(3]

(4]

(5]

Niels Brouwers, Marco Zuniga, and Koen Langendoen. “NEAT: A Novel Energy Analysis Toolkit for
Free-Roaming Smartphones” In: Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems. SenSys '14. Memphis, Tennessee: Association for Computing Machinery, 2014, pp. 16-30. ISBN:
9781450331432. DOI: 10.1145/2668332.2668337. URL: https://doi.org/10.1145/2668332.2668337.

Christian Clemm et al. “,,Market Trends in Smartphone Design and Reliability Testing “" In:
FraunhoferInstitut fir Zuverlassigkeit und Mikrointegration (2020), pp. 171-178.

Mohammad Ashraful Hoque et al. “Modeling, Profiling, and Debugging the Energy Consumption of Mobile
Devices” In: ACM Comput. Surv. 48.3 (Dec. 2015). ISSN: 0360-0300. DOI: 10.1145/2840723. URL:
https://doi.org/10.1145/2840723.

Adam J. Oliner et al. “Carat: Collaborative Energy Diagnosis for Mobile Devices” In: Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems. SenSys '13. Roma, Italy: Association for
Computing Machinery, 2013. ISBN: 9781450320276. DOI: 10.1145/2517351.2517354. URL:
https://doi.org/18.1145/2517351.2517354.

Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. “Bootstrapping Energy Debugging on Smartphones: A
First Look at Energy Bugs in Mobile Devices” In: ACM HotNets. Jan. 2011. URL:
https://www.microsoft.com/en-us/research/publication/bootstrapping-energy-debugging-on-
smartphones-a-first-look-at-energy-bugs-in-mobile-devices/

45/46

https://doi.org/10.1145/2668332.2668337
https://doi.org/10.1145/2668332.2668337
https://doi.org/10.1145/2840723
https://doi.org/10.1145/2840723
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1145/2517351.2517354
https://www.microsoft.com/en-us/research/publication/bootstrapping-energy-debugging-on-smartphones-a-first-look-at-energy-bugs-in-mobile-devices/
https://www.microsoft.com/en-us/research/publication/bootstrapping-energy-debugging-on-smartphones-a-first-look-at-energy-bugs-in-mobile-devices/

Power Aware Computing

Mechanisms for Power Draw Analysis on Mobile Devices

>_ PROD v1.3 ¢

&1 Ernesto Martinez Garcia & SLIDES & REPORT
me@ecomaikgolf.com

&, Marcell Haritopoulos

marcell. haritopoulos@student. tugraz.at
I Graz University of Technology
& Power Aware Computing LU SS23

B 23rd of November 2023

1s.ecomaikgolf.com/slides/power-aware-comp

	References

