
D
ra
ft

 SLIDES & REPORT

ls.ecomaikgolf.com/slides/power-aware-comp

Power Aware Computing
Mechanisms for Power Draw Analysis on Mobile Devices
 DEV v1.3-RC1

1 Ernesto Martínez García
me@ecomaikgolf.com

2 Marcell Haritopoulos
marcell.haritopoulos@student.tugraz.at

 Graz University of Technology

 Power Aware Computing LU SS23

 23rd of November 2023



D
ra
ft

Motivation

 Why Mobile Energy Consumption

• Mobile Devices took big part of the computing share in the last decade
• Big part of the modern economy & society is based on them
• Our smartphones runs without a power plug. The best battery wins the market

◎ Objectives

• Show how devices we use daily manage power consumption
• Overview the paper as a baseline, but base the research on current techniques
• Android & Mobile Devices hardware update almost each year. Check curent state

2/46



D
ra
ft

Table of Contents

 Introduction
 Motivation

 Model-based Energy Profiling
 Components
 Objectives
 Building

 System-Level Consumption
 Instrumentation
 Metering
 SOC Estimation

 Power Modeling Methodology
 Objectives
 Classification

 Energy Profilers
 Taxonomy

 Energy Diagnosis
 eBugs
 Carat

 Android Case Study
 Subcomponents
 Profiling Apps

 iOS Case Study
 Profiling Apps

 Recap
 Takeaways

3/46



D
ra
ftIntroduction





D
ra
ft

History of Batteries

 Mobile Devices heavily depend on batteries to run

 In the case of smarphones, they condition the quality of the product

• More battery means more weight & size

• More battery means more CPU/GPU/TPU power

• More battery means more charging times

• More battery means more usage time

• And the respective inverses

 Smartphone battery is the feature that increased the least between 2010 and 2019

 In some cases, vendors can’t increase the size the battery due to limitations

 As a result, Consumption Optimization plays a leading role in mobile devices

5/46



D
ra
ft

User Endpoint Importance

 Who’s using your product?

• A contract bussiness partner

• A skilled user

• A non skilled user

 Can we optimize power the same way for all of our products?

• Bussiness partner probably runs our code as intended by contract

• Skilled users might follow our guidelines for optimization

• Non skilled user might code infinite while(1) loops

 See how there is a need for consumption control in the device

 This task is commonly done by at Operating System level

6/46



D
ra
ftModel-based

Energy Profiling





D
ra
ft

Introduction

 What’s “Model-based Energy Profiling” about?

We leverage the following mechanisms/components:

Power Measure Power Model Power Estimation Power Profiler

To profile the energy consumption of:

System Subcomponents Applications

 If we think about the challenge it proposes, it’s tricky

We have a system-wide power measurement

We could have per-component measurement, but components are reused for tasks

How we identify which consumption comes from where?
8/46



D
ra
ft

Model-based Energy Profiling Definitions

 Power Measurement

Obtaining power (or current) consumption values directly from hardware.

 Power Model

Mathematical model of power draw with variables that quantify the impact of usage

 Power Estimation

Power draw consumption of a specific subsystem based on the Power Model.

 Power Profiler

Leverage previous techniques to estimate power usage at certain abstraction layers

9/46



D
ra
ft

Constructing a Model-based Energy Profiler

 The development of it is divided in four phases

Method Select. Variable Selection Model Train. Profile Evaluation

Some of them are done in Laboratories  some on a Computer 

 A general overview of the process would be:

1. An expert chooses a Method

2. From the Method we get Models

3. An expert selects Variables for the Model

4. With the Parameterized Model, we train it with device “logs”

5. The Fitted Model output is evaluated

10/46



D
ra
ftSystem-Level Power

Consumption Retrieval





D
ra
ft

External instrumentation

 Idea: Measure overall power consumption using external tools

 Multitude of options available:

 Power Monitor

Connects to the device’s battery connector and directly powers it, while allowing the
monitor to measure the draw.

Figure: Example usage of Monsoon Power Monitor1

1Source: https://tqrg.github.io/physalia/monsoon_tutorial
12/46

https://tqrg.github.io/physalia/monsoon_tutorial


D
ra
ft

External instrumentation

 Idea: Measure overall power consumption using external tools

 Multitude of options available:

 Voltage Meter

Place a resistor in series to the power source, use Ohm’s Law to deduce current.
Can operate on either the device’s battery or external supply (but external supply is
preferred as battery voltage changes with state of charge)

Figure: NEAT power meter installed in a phone[1, p. 8]

12/46



D
ra
ft

External instrumentation

 Idea: Measure overall power consumption using external tools

 Mostly feasible only in laboratory environment:

• All of these methods at least require to open the phone
→ Potentially destructive on some phones (e.g. adhesive and IP sealing)

• Mostly not portable, especially when not using the device’s battery

12/46



D
ra
ft

Self-Metering

 Idea: Include capabilities in the phone to deduce power consumption without tools

 Open circuit voltage (OCV)

The voltage of the battery with no load attached.

 State of Charge (SOC)

The remaining charge capacity the battery holds, in percent.

 By measuring change in SOC over an interval, we can deduce the average current
draw using the OCV.

 But: Batteries are not ideal
→ Battery models necessary

13/46



D
ra
ft

Self-Metering - Battery models

Figure: Battery models[3, p. 39:6]

 Terminal voltage (Vt)

The voltage measurable across the battery’s terminals.

 Due to internal components, the terminal voltage drops depending on the current flow

 As a consequence, we are unable to measure true OCV (but come closet with low
power draw)

14/46



D
ra
ft

Self-Metering - Battery models

Figure: Battery models[3, p. 39:6]

Rint Model

Single ohmic resistance in series.

Vt = VOCV − I ∗ R

Thevenin Model

Additional capacitor models transient
response of charging and discharging.

Vt = VOCV − Vc − I ∗ R

14/46



D
ra
ft

SOC estimation

 SOC can usually not be measured - it needs to be estimated

 As it is estimated, estimation errors propagate to energy profiles

There are two methods available:

 Voltage-based estimation

 Use strictly decreasing discharge curve to map OCV to SOC.

 Mapping is fragile and depends on the batteries properties (age, model, ...)
→ Personalized discharge curve must be updated regularly

 Battery voltage depends on a lot of factors: Age, temperature, (dynamic) load, ...
→ Significant estimation error

15/46



D
ra
ft

SOC estimation

 SOC can usually not be measured - it needs to be estimated

 As it is estimated, estimation errors propagate to energy profiles

There are two methods available:

 Coulomb counting

 Accumulate drawn current over time by directly sensing current:

SOC = SOCinit −
∫ Ibat

Cuseable
dt

 Usable battery capacity Cuseable must be estimated and depends on various factors:
Age, temperature, charge cycles, ...

 Offset current accumulation error due to ADC must be compensated (e.g. long idle
times)

15/46



D
ra
ftPower Modeling
Methodology





D
ra
ft

Introduction

 Power Models measure power consumption based on different inputs

Models are usually pre-trained with inputs & logs measurements

This yields a mathematical model that for a certain input, can estimate power

 Power Models obviously have an error percentage

Error can be obtained by comparing results with hardware-instrumented devices

 Depending on input type, different classifications arise

 Depending on available information, different classifications arise

17/46



D
ra
ft

Input-type Classification

 Utilization Based Models

Correlates power draw with measured resource usage.

An example of this mechanism is CPU’s Hardware Performance Counters.

 Event-Based Models

Captures the power draw based on events (syscalls, state changes, …).

Useful for HW components with nonlinear power draw.

Handles tail energy better: Some devices delay entering sleep when no longer in use.

 Code Analysis Based Models

Estimate power by inputing the source code via static analysis.

18/46



D
ra
ft

Information-Available Classification

 Whitebox Modeling

We can capture consumption behaviour with Finite State Machines (FSM).

FSM’s would describe the consumption in each state and the cost of transitioning them

We require knowledge of the states and the triggers for transitioning them

Usecase: Modeling the wireless subcomponent, as different states are important

 Blackbox Modeling

We can’t capture high granularity specific consumption behaviour.

We rely on models like linear regression with fitting to get an approximation

Assumption of linearity comes with limitations.

Usecase: Modeling the screen brightness subcomponent.

19/46



D
ra
ftEnergy Profilers





D
ra
ft

Categories of Energy Profilers

 Energy profilers can be divided into three categories:

• On-device profilers with on-device model construction

• On-device profilers with off-device model construction

• Off-device profilers (with off-device model construction)

 No research about off-device profilers with on-device model construction is known

Copying model for offline processing cubersome; processing can be done on device

21/46



D
ra
ft

On-device profilers with on-device model construction

e.g.: Nokia NEP (Symbian), Qualcomm Trepn, PowerBooter, Sesame, ...

 These profilers rely on battery state updates through self-metering

 Only one profiler needed some external calibration (but no external measurments), all
others are independent from external tooling.

 Most profilers use linear regression models, but some profilers automatically generate
models

 Various unique approaches (voltage vs. current, special HW support, ...)

 Qualcomm’s Trepn is most accurate (close to Monsoon Power Monitor)!

Snapdr. SoCs has hardware instrum. using sense resistors and & fuel gauge in PMIC

Able to record fine-grained subcomponent energy consumption (CPU, GPU, ...)

22/46



D
ra
ft

On-device profilers with off-device model construction

e.g.: Android Power Profiler, PowerTutor, PowerProf

 Depend on vendor-provided offline calibration and power measurement phases

 Integral part of mobile operating system

 Profiles vary on the supported HW components and states, affecting accuracy

 Android’s Power Profiler is discussed later

 PowerProf is able to learn model unsupervised with genetic algorithms

23/46



D
ra
ft

Off-device profilers

e.g.: PowerScope, JouleWatcher, Eprof, ...

 Profile app’s resource utilization (time and/or syscalls), performs code analysis
(on-device or emulated)

 Generate model by mapping activities to energy consumption based on utilization or
FSMs.

 Usually supports accurate and fine energy consumption characterization of app,
subsystem and device (suitable for debugging apps)

 Generate model by mapping activities to energy consumption

24/46



D
ra
ftEnergy Diagnosis





D
ra
ft

Energy Bugs

 Energy Bug (eBug)

“[A]n error in the system, either application, OS, hardware, firmware or external that
causes an unexpected amount of high energy consumption by the system as awhole”[5,
p. 1]

 eBugs are not traditional bugs: Comptation and stability unaffected

 Hard to detect and pinpoint due to diversity of causes:

Figure: Categorization of eBugs [3, p. 39:25]
26/46



D
ra
ft

Energy Bugs

 Energy Bug (eBug)

“[A]n error in the system, either application, OS, hardware, firmware or external that
causes an unexpected amount of high energy consumption by the system as awhole”[5,
p. 1]

 Energy diagnosis engine can give insights in eBugs

 Depending on the tool, answers (some of) these questions:

• What is the normal power usage of the program? What is abnormal?

• Is power optimization beneficial?

• Is higher power draw caused by the user or by bad system configuration?

26/46



D
ra
ft

Example: Carat

 Local instrumentation on one device, user, system configuration, ..., not sufficient for
classification of power draw

 App must be run under different conditions to see if (and how much) changing aspects
of system improves battery.

 Idea: Use collaborative approach (community) to analyze app under various conditions

 Carat measures reference distribution of discharge rates during normal usage

27/46



D
ra
ft

Example: Carat

 When new app is introduced, its impact on average discharge rate is measured

 Depending on inpact to average discharge rate, app may be categorized as energy hog
or bug:

 Energy Hog

An app is a energy hog if its usage drains battery much faster than the average app
(affecting the entire device community).

Some energy hogs may have good reasons (e.g. camera app), but classification may
make user aware of energy drain.

Drain of energy hogs are unlikely to be fixed by app restarts - should run as little as
possible

However: Apps using energy intensive resources (e.g. radios) are not necessarily hogs
(if resources are not overused)

28/46



D
ra
ft

Example: Carat

 When new app is introduced, its impact on average discharge rate is measured

 Depending on inpact to average discharge rate, app may be categorized as energy hog
or bug:

 Energy Bug (Carat)

An app is a energy bug if it drains the battery much faster on a device than on the average
on other devices.

Due to the collaborative nature, detecting energy bugs over a variety of configuration
(usage patterns, devices, configuration)may be easier and causes of themmore isolated.

28/46



D
ra
ft

Example: Carat

 Carat app shows list of hogs and bugs

 Allows user to perform actions (kill hogs, restart bugs) and shows expected
improvement by action

 App can also notify user on OS updates that improved efficiency across the
community

 After 90+ days, Carat’s action recommendations improved battery live by 41% for
long-term users (compared to 7.9% in control group)

 95% of the estimated time improvement (with a confidence of 95%) were correct.

29/46



D
ra
ftAndroid Case Study





D
ra
ft

Introduction

 Android is one of the biggest smartphone OS

 Due to the naturity of the hardware, battery optimization is a key part of Android

As Android is an Open Source project, we can study exactly how it works! ⌣

 The complete profiling system is based on three subcomponents:

BatteryStats Power Profile Power Model

 Android has an On-Device Profiler with Off-Device Model Construction

So the Model comes pre-initialized when you buy a device

Profiling is done on a daily basis on the device

31/46



D
ra
ft

BatteryStats - Android

 BatteryStats is responsible for tracking hardware usage

Records usage time along timestamps

Does not directly measure energy draw from the battery

 Has two main working mechanisms:

 Push Mechanism

Subcomponents push the component state change to the BatteryStats daemon.

 Polling Mechanism

BatteryStats pulls information periodicallt from the proc/ filesystem

 BatteryStats usually saves 30min of statistics in case of reboot

 It also provides statistics to requestisting services
32/46



D
ra
ft

Power Profile - Android

 BatteryStats uses Power Profile values to estimate power draw per component

 Android is installed in heterogeneous hardware. Who provides this values?

Each Android device vendor has to fill it with custom values in Android mainline

 Android deliberately has incorrect default values to force vendors to do measurements

 main/core/res/res/xml/power_profile.xml

1 <item name=”screen.full.display0”>0.1</item> <!-- ~100mA -->
2 <item name=”bluetooth.active”>0.1</item> <!-- Bluetooth data transfer, ~10mA -->
3 <item name=”bluetooth.on”>0.1</item> <!-- Bluetooth on & connectable, but not connected, ~0.1mA -->
4 <item name=”wifi.on”>0.1</item> <!-- ~3mA -->
5 <item name=”wifi.active”>0.1</item> <!-- WIFI data transfer, ~200mA -->
6 <item name=”wifi.scan”>0.1</item> <!-- WIFI network scanning, ~100mA -->
7 <item name=”audio”>0.1</item> <!-- ~10mA -->
8 <item name=”video”>0.1</item> <!-- ~50mA -->
9 <item name=”camera.flashlight”>0.1</item> <!-- Avg. power for camera flash, ~160mA -->

10 <item name=”camera.avg”>0.1</item> <!-- Avg. power use of camera in standard usecases, ~550mA -->
11 <item name=”gps.on”>0.1</item> <!-- ~50mA -->
12 <item name=”radio.active”>0.1</item> <!-- ~200mA -->
13 <item name=”radio.scanning”>0.1</item> <!-- cellular radio scanning for signal, ~10mA -->
14 [...]

33/46



D
ra
ft

Power Model - Android

 With usage times & measured power values we can estimate consumption

34/46



D
ra
ft

Profiling Android Applications

 Android provides a mechanism to access power estimation mechanisms

 adb shell dumpsys batterystats –checkin

9,0,i,vers,11,116,K,L
9,0,i,uid,1000,android
9,0,i,uid,1000,com.android.providers.settings
9,0,i,uid,1000,com.android.inputdevices
9,0,i,uid,1000,com.android.server.telecom
...
9,0,i,dsd,1820451,97,s-,p-
9,0,i,dsd,3517481,98,s-,p-
9,0,l,bt,0,8548446,1000983,8566645,1019182,1418672206045,8541652,994188
9,0,l,gn,0,0,666932,495312,0,0,2104,1444
9,0,l,m,6794,0,8548446,8548446,0,0,0,666932,495312,0,697728,0,0,0,5797,0,0

 This raw information can be plotted via different tools

35/46



D
ra
ft

Android Energy Profiler

36/46



D
ra
ft

Android Energy Profiler

36/46



D
ra
ft

Android Energy Profiler

36/46



D
ra
ft

Battery Historian

37/46



D
ra
ft

Battery Historian

37/46



D
ra
ft

Battery Historian

37/46



D
ra
ft

Application Developer Safeguards

 Android restricts code that could waste power inefficiently

You can’t have services running permanently

They even patch bypasses to this restriction (recent Android 14 watchdog technique)

You have to use their APIs, which are implemented properly in a power-conscious way

 Android restricts code when device is unused: Project Doze

During sleep state in Doze:

• Apps can’t access the internet
• App wakeloks are ignored
• WiFi Scans can’t be done
• SyncAdapter and JobScheduler is deferred

Doze exits sleep state on: interaction, device movement, screen on, inminent alarm

38/46



D
ra
ftiOS Case Study





D
ra
ft

Profiling iOS Applications

 Apple provides an official mechanism to measure energy on iOS applications

Per-application, one can study power usage per subsystem/component

Apple also assigns an overall usage: Low, Medium, High

 Measurements can be done through XCode1

 Developers can use this information to optimize power in their apps

 We’ve also found papers & articles regarding API usage recommendations

1https://developer.apple.com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-iOS/MonitorEnergyWithXcode.html

40/46

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithXcode.html


D
ra
ft

Profiling iOS Applications

41/46



D
ra
ft

Profiling iOS Applications

41/46



D
ra
ft

Profiling iOS Applications

41/46



D
ra
ft

Profiling iOS Applications

41/46



D
ra
ft

Models Used

 Which models does Apple use then? How do they calculate them?

 iOS is closed source, Apple is reticent on its internals

⌢ Sadly we can’t find Android’s equivalent information for iOS

42/46



D
ra
ftSummary





D
ra
ft

Recap & Takeaways

 Due to limitations, power optimization is a keystone in mobile devices

 Estimating per-module power draw is not trivial and requires modeling

 Vendor ships software components with pre-trained power models

 When developing applications, we can make use of energy profilers

 Operating Systems are very strict on energy usage

44/46



D
ra
ft

Bibliography

[1] Niels Brouwers, Marco Zuniga, and Koen Langendoen. “NEAT: A Novel Energy Analysis Toolkit for
Free-Roaming Smartphones”. In: Proceedings of the 12th ACM Conference on Embedded Network Sensor
Systems. SenSys ’14. Memphis, Tennessee: Association for Computing Machinery, 2014, pp. 16–30. ISBN:
9781450331432. DOI: 10.1145/2668332.2668337. URL: https://doi.org/10.1145/2668332.2668337.

[2] Christian Clemm et al. “„Market Trends in Smartphone Design and Reliability Testing “”. In:
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (2020), pp. 171–178.

[3] Mohammad Ashraful Hoque et al. “Modeling, Profiling, and Debugging the Energy Consumption of Mobile
Devices”. In: ACM Comput. Surv. 48.3 (Dec. 2015). ISSN: 0360-0300. DOI: 10.1145/2840723. URL:
https://doi.org/10.1145/2840723.

[4] Adam J. Oliner et al. “Carat: Collaborative Energy Diagnosis for Mobile Devices”. In: Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems. SenSys ’13. Roma, Italy: Association for
Computing Machinery, 2013. ISBN: 9781450320276. DOI: 10.1145/2517351.2517354. URL:
https://doi.org/10.1145/2517351.2517354.

[5] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. “Bootstrapping Energy Debugging on Smartphones: A
First Look at Energy Bugs in Mobile Devices”. In: ACM HotNets. Jan. 2011. URL:
https://www.microsoft.com/en-us/research/publication/bootstrapping-energy-debugging-on-
smartphones-a-first-look-at-energy-bugs-in-mobile-devices/.

45/46

https://doi.org/10.1145/2668332.2668337
https://doi.org/10.1145/2668332.2668337
https://doi.org/10.1145/2840723
https://doi.org/10.1145/2840723
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1145/2517351.2517354
https://www.microsoft.com/en-us/research/publication/bootstrapping-energy-debugging-on-smartphones-a-first-look-at-energy-bugs-in-mobile-devices/
https://www.microsoft.com/en-us/research/publication/bootstrapping-energy-debugging-on-smartphones-a-first-look-at-energy-bugs-in-mobile-devices/


D
ra
ft

 SLIDES & REPORT

ls.ecomaikgolf.com/slides/power-aware-comp

Power Aware Computing
Mechanisms for Power Draw Analysis on Mobile Devices
 PROD v1.3 

1 Ernesto Martínez García
me@ecomaikgolf.com

2 Marcell Haritopoulos
marcell.haritopoulos@student.tugraz.at

 Graz University of Technology

 Power Aware Computing LU SS23

 23rd of November 2023


	References

